By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Partial Discharge in Power Lines and its Detection through Sensors
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Ask
  • Courses
  • Videos
  • Q & A
  • EE
  • Measure
  • Control
  • More
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Basics > Partial Discharge in Power Lines and its Detection through Sensors
Electrical Basics

Partial Discharge in Power Lines and its Detection through Sensors

In this post, we will understand the theory of partial discharge in power lines and how it is detected through sensors.

Last updated: September 28, 2022 4:09 pm
Viral Nagda
Share
6 Min Read
SHARE

In this post, we will understand the theory of partial discharge in power lines and how it is detected through sensors.

Contents
Partial Discharge in Power LinesDetection Methods of Partial DischargeOnline MethodOffline MethodDetection System

In electrical systems, insulation between conductors is a big factor in deciding its performance. Bad insulation can partially or completely break down the system.

Partial Discharge in Power Lines

Often, a common issue roots up in insulation and it damages the system; named partial discharge. Partial discharge is a consequence of local electrical stress (normally caused in high voltage lines) on the insulation system.

Partial Discharge in Power Lines and its Detection through Sensors

Due to this, a discharge occurs in insulators, as the insulation between conductors is partially bridged now. Insulation is a protection layer for the conductor; and if this insulation fails, then it will indirectly damage the electrical system.

During discharge, various types of exchange of energy take place; which can be classified as – dielectric losses, light (M radiation), noise, gas pressure, chemical reactions, and electrical pulse currents. It depends on the type of media used in insulation (solid, liquid, or gas).

Simply, for example, consider there is a void or impurity in insulation, caused by stress. When a high voltage is applied to the conductor, an electric field is also induced in this void.

Further high voltage can break down the insulation and it will then discharge different forms of energy; which can be termed partial discharge.

Partial discharge normally starts within gas voids of the insulation, which are created by voltage stress or have occurred during the manufacturing stage when a poor vacuum was provided.

The dielectric constant of this void is lower than the dielectric of the surrounding. Lower dielectric means higher chances of getting voltage stress. When this void is then subjected to constant high voltage stress, discharge starts happening continuously from it.

As the power cables are longer in length, there will be several such voids present in them and it will overall break down the system after a period of time.

Because the gap of the void goes on increasing if there is no control, there will be the stage where insulation will be of no use and the system will fail.

Detection Methods of Partial Discharge

So, every power distributor needs a mechanism to detect partial discharge; to avoid failure of the system in long run.

Normally, there are two methods of detecting partial discharge – online and offline.

Online Method

In the online method, detection is done in real-time conditions; that means at a regular operating voltage of the cable, operating temperature, and voltage stress.

It reduces time, prevents special shutdown required, and is less costly.

Offline Method

In the offline method, as the name implies, detection is done in offline conditions; that means the system is shut down specially or sometimes, removed from the distribution system.

Though it takes time, it provides greater accuracy; as you get all the time to test and also apply higher voltages. This method is costlier than the online process.

Detection System

If you see its detection system, generally consists of a PC software for troubleshooting, a high voltage filter to reduce background noise from the power supply, a partial discharge detector, high-voltage connections, and a coupling capacitor of low inductance design.

Let us understand how its detection system works. It is to be noted that partial discharge currents are short in duration and have high rise time peaks.

So, if you observe it in an oscilloscope waveform, it will clearly appear as bursts at the peak of the sine wave. This peak is graphed against time.

Then, a method called time domain reflectometry (TDR) is used to detect the location of the discharges. They are then displayed on the software in its format and so, used for troubleshooting further.

The types of detectors used in analyzing are – UHF (Ultra High Frequency) sensors for detecting electromagnetic waves, HFCT (High-Frequency Current Transformer) for detecting high peak currents by inducing its emf in the secondary windings and then sending this information to PC and TEV (Transient Earth Voltage) sensor to detect TEV signal or earth noise signal representing PD inside.

There are some sensors too that combine the above three methods to provide more accurate and efficient output.

Partial discharge is a grave problem if not detected at an early stage and so, it is important to either analyze it in the production stage itself; or monitor it on a regular basis when in use.

In this way, we saw the concept of partial discharge in power lines.  

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Hazardous Areas in Industry – Electrical Equipment Selection
Effects of Long Distance Cables between VFD and Motor
Basics of Electricity Rates
Siemens Standard Drives Application Handbook (PDF)
What are Ground Fault and Earth Fault?
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
206kSubscribersSubscribe
38kFollowersFollow

Latest

Top Non-PLC Certification Courses for Automation Professionals
Top Non-PLC Certification Courses for Automation Professionals
Common
Things You Need to Know About DeviceNet
Things You Need to Know About DeviceNet
Communication
Why is IEC 60269 Important
Why is IEC 60269 Important? – Electrical Applications
Standards
NAMUR OPEN ARCHITECTURE
What is NAMUR OPEN ARCHITECTURE?
Control Systems

You Might also Like

V1000 Family Programming Simulator Tool
Control SystemsElectrical BasicsPLC TutorialsSoftware

VFD Simulator Download – Free Yaskawa V1000 Software

Editorial Staff
Editorial Staff
May 2, 2024
RDOL starter
Electrical Basics

What are DOL and RDOL starters? Advantages, Disadvantages

R Jagan Mohan Rao
R Jagan Mohan Rao
October 17, 2023
Motor Control Center Purpose
Electrical Basics

Motor Control Center – Purpose, Classification, and Advantages

R Jagan Mohan Rao
R Jagan Mohan Rao
September 28, 2022
100 Electronics and Electrical Projects for Engineering Students
Electrical BasicsElectronic BasicsProjects

100 Electronics and Electrical Projects for Engineering Students

Editorial Staff
Editorial Staff
July 12, 2024
Why is HV Testing important in Electrical Panels?
Electrical Basics

Why is HV Testing important in Electrical Panels?

Viral Nagda
Viral Nagda
September 19, 2024
Flame Cables
Electrical Basics

Difference Between Flame Resistant and Flame Retardant Cables

Viral Nagda
Viral Nagda
July 15, 2023
//

Inst Tools

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”847″]

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?