Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Lower Explosive Limit (LEL)
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Fire & Gas System > Lower Explosive Limit (LEL)

Lower Explosive Limit (LEL)

Last updated: May 31, 2019 5:20 pm
Editorial Staff
Fire & Gas System
No Comments
Share
4 Min Read
SHARE

The minimum concentration of a flammable gas in air capable of igniting is called the Lower Explosive Limit, or LEL.

This limit varies with the type of gas and with the oxygen concentration of the air in which the flammable gas is mixed.

Sensors designed to detect the dangerous presence of combustible gases are therefore called “LEL sensors.”

LEL monitors are used whenever there is a high probability of explosive gases present in the air.

These areas are referred to as classified areas in industry, and are precisely defined for safety engineering purposes.

Classified areas harboring explosive gases or vapors are deemed Class I areas, with different “Group” categories delineating the specific gas or vapor types involved.

Gases and vapors are not the only substances with the potential to explode in sufficient concentration.

Certain dusts (such as grain) and fibers (such as cotton) may also present explosion hazards if present in sufficient quantity.

Unfortunately, the majority of analytical technologies used to monitor lower explosive limits for safety purposes only function with gases and vapors (Class I), not dusts or fibers (Class II and Class III, respectively).

Popular sensor technologies used to detect the presence of combustibles in air include the following:

  • Catalytic bead
  • Infrared
  • Flame ionization
  • Thermocouple

Catalytic bead and thermocouple sensors both function on the principle of heat generated during combustion.

Air potentially containing a concentration of flammable gases or vapors passes near a heated element, and any combustion occurring at that point will cause the local temperature to immediately rise.

These sensors must be designed in such a way they will not initiate an explosion, but merely combust the sample in a safe and measurable manner.

Like micro fuel cell oxygen sensors, these sensors may be manufactured in sufficiently small and rugged packages to enable their use as portable LEL sensors.

Infrared analyzers exploit the phenomenon of infrared (IR) light absorption by certain types of flammable gases and vapors.

A beam of infrared light passed across a sample of air will diminish in intensity if significant concentrations of the combustible substance exist in that sample.

Measuring this attenuation provides an indirect measurement of explosive potential.

A major disadvantage of this technique is that many non-flammable gases and vapors also absorb IR light, including carbon dioxide and water vapor.

In order to successfully reject these non-flammable substances, the analyzer must use very specific wavelengths of IR light, tuned to the specific substances of interest (and/or wavelengths tuned specifically to the substances of non-interest, as a compensating reference signal for the wavelengths captured by both the substances of interest and the substances of non-interest).

Flame ionization sensors work on the same principle as FIDs for chromatographs: a non-ionizing flame (usually fueled by hydrogen gas) will generate detectable ions only in the presence of air samples containing an ionizing fuel (such as a hydrocarbon gas). Of course, this form of LEL sensor is useless to detect hydrogen gas.

Also Read : Importance of LEL in F&G

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Rate Compensated Heat Detectors Working Principle
Why we use End of Line (EOL) Resistor in Fire and Gas System ?
Fire Extinguishers Mock Test
Gas Detection System Abbreviations
Calibration of Gas Detectors
Catalytic Gas Detectors Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Gas Detectors Working Principle
Basics of Foam Fire Fighting System
Why Negative Readings in Gas Detectors ?
Flame Detectors Working Principle
Rate of Rise Thermal Detectors Working Principle
Which One is Best – Conventional or Addressable Fire Alarm System?
Gas Detectors Practical Problems and Troubleshooting
Which Gases Can a Multi-Gas Detector Detect?

Keep Learning

Overview of Fire Detectors

Overview of Fire/Smoke/Flame/Heat/Gas Detectors

Sprinkler System

Basics of Sprinkler System

Carbon Monoxide Gas Detector

Carbon Monoxide Gas Sensor Principle

Linear Heat Detector Working Principle

What are Linear Heat Detectors?

Industrial Flame Detectors

Industrial Flame Detectors

Difference Between Passive and Active Fire Protection

Active and Passive Fire Protection

Fire and Gas (F&G) Mapping: Methodology, Performance Targets, Acceptance Criteria

Argonite Fire Suppression System Animation

Argonite Fire Suppression System Working Principle

Learn More

3-way globe valve

What is Mixing or Diverting Valve ?

What is Electrical Busbar

What is Electrical Busbar? Types, Advantages, Disadvantages

C-Bourdon Tube

C-Bourdon Tube Pressure Gauge Theory

Differential Pressure Sensor Calibration

Differential Pressure Sensors Calibration Procedure

Control Valves Questions and Answers

Control Valve Questions and Answers

Electrical Equipment Selection in Hazardous Area

Hazardous Areas in Industry – Electrical Equipment Selection

Delete Siemens CPU Memory

How to Delete the Siemens CPU Memory?

Modbus Network Motor Control

Motor Control using Modbus Communication and Hardwired Signals

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?