Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Quick Exhaust and Air Operated Valves in Instrumentation Circuit
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Valves > Quick Exhaust and Air Operated Valves in Instrumentation Circuit

Quick Exhaust and Air Operated Valves in Instrumentation Circuit

Understanding the application of Quick exhaust and Air operated valves in instrumentation circuits with sample cases.

Last updated: August 15, 2023 6:52 am
Editorial Staff
Control Valves
No Comments
Share
5 Min Read
SHARE

Understanding the application of Quick exhaust and Air operated valves in instrumentation circuits with sample cases.

Contents
Quick Exhaust Valve (QEV)Pilot / Air Operated Valve

Before looking into the application of Quick Exhaust Valve (QEV) and Air operated valves in instrumentations. Let’s go through the definitions of the same.

Quick Exhaust Valve (QEV)

The quick exhaust valve is a three-way valve that works primarily on the differential pressure between inlet and outlet ports.

Quick Exhaust Valve (QEV) finds application wherever there is a necessity for faster stroking time or air from the cylinder need to be exhausted quickly.

Quick Exhaust Valve (QEV)

Pilot / Air Operated Valve

The pilot Valve is the same as the solenoid valve, however, instead of an electric signal, an air pressure signal shall be used to direct the spool to either keep it closed or open.

Pilot Valve P&ID

In process and automation industries, QEV and Pilot valves are used widely in Actuator and pneumatic cylinders for quick exhaust and stroking applications. Let us go through the below scenarios and understand where the application demands the use of QEV or Pilot valve 

Suppose if we are having SOV, QEV, and PV of below sizes and flow capacity, let’s see how we can efficiently use the available ones with the below sample cases

ComponentPort SizeFlow Capability – Cv (m3/hr)Average Cost (INR)
SOV1/4″ NPT0.536000
QEV1/4″ NPT1.14000
PV1/4″ NPT1.55500

Case 1:

Taking 6 Inch Valve which is actuated by a pneumatic actuator with a cylinder volume of 10.37 liters.

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.3730300.2190.183

Here the actuator requires air flow capacity of 0.219 and 0.183 in opening and closing of the valve respectively, which is lower than the SOV flow capacity of 0.53.

So the stroking of the actuator can be performed by SOV easily and usage of QEV and PV is not required.

SOV control circuit

Case 2:

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.373060.2190.765

In this case, the required flow capacity in the closing of the valve is higher than the SOV’s Cv of 0.53.

However the above-mentioned QEV has a flow of 1.1, which shall meet this requirement.

Note: Even a pilot valve can be used for this circuit, however, the flow capacity is higher only during the closing of the valve, so using QEV will be an cost-efficient option

Quick Exhaust Valve (QEV) Control circuit

Case 3:

Valve Size (Inch)ACT cylinder Volume (Ltr)Stroking time (sec) – OpeningStroking time (sec) – ClosingRequired Flow capacity (m3/hr) – OpeningRequired Flow capacity (m3/hr) – Closing
610.37661.3701.150

Since the required flow capacity of the actuator is higher in both opening and closing positions. A Pilot valve with a flow capacity of 1.5 can be employed here to stroke the valve.

Note: Instead of Pilot Valve, an SOV of ½” port size can also be used, however, its the cost would be very high, and going with a pilot valve and ¼” port size SOV in the pilot line would be the cost-effective option.

Pilot Valve (PV) control circuit

Author: Jamal Shagul Ameedh JM

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC, and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • On-Off Valve Problems
  • Control Valve Design Factors
  • Solenoid and Motorized Valves
  • Control Valve Maintenance
  • Butterfly Valves and Ball Valves
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
What is a Disc Valve ?
Breather Valve Working Principle
Control Valve Passing Problem after Overhauling Job
SIS Emergency Block Valves (EBV)
Pressure to Current (P/I) Converter Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

electric motor actuator principle

What is a Electric Motor Actuator ?

valve control system

Solenoid Valves Practical Problems

Control Valves Questions and Answers

Control Valve Questions and Answers

Difference Between the Control Valve and Shut-off Valve

Difference Between the Control Valve and Shut-off Valve

Needle Valve Body Design

What is Needle Valve ?

Chocked flow

Control Valve Cavitation and Flashing

Types of Control Valves Noise

Types of Control Valves Noise

Gate Valve

How Gate Valves Work ?

More Articles

Comparison of Flowmeters

Difference between Different Types of Flow Meters

proximitor module

Bently Nevada Vibration System Verification Procedure

Piezo Electric Transducers Objective Questions

Piezo Electric Transducers Objective Questions

Alarm annunciator circuit with acknowledge

Alarm Annunciator Circuit with Acknowledge

Mechanical Vibration Switch

Vibration Switch Working Principle

PLC Program for Automatic Mixing Controlling in a Tank

PLC Program for Automatic Mixing Control in a Tank

HMI configuration for Delta VFD

Modbus Communication between Delta PLC with VFD

Electric Drives and Traction Objective Questions and Answers

Electric Drives and Traction Interview Questions

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?