Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Basic Concepts of the Safety Relay
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Control Systems > Basic Concepts of the Safety Relay

Basic Concepts of the Safety Relay

Safety relays can detect wire breaks, faulty contactors, faulty safety actuators, short circuits, etc. Learn the basic concepts.

Last updated: September 27, 2024 10:53 am
Viral Nagda
Control Systems PLC Tutorials
3 Comments
Share
6 Min Read
SHARE

In this post, we will cover the basic concepts of the safety relay.

Contents
Basics of RelaySafety Relay

One of the most important components used in an electrical panel is a relay. A relay is an electromechanical switch that is electrically energized to operate its mechanical contacts. Basically, it separates two circuits and works as a contact between them.

Basics of Relay

Refer to the below image. A standard relay consists of 5 terminals.

The input circuit consists of two terminals – positive potential and negative potential.

Relay Parts

The output circuit consists of three terminals – common (COM), normally-Open (NO), and normally-Closed (NC).

In de-energized condition, the contact is between COM and NC terminals. When the coil is energized, the contact is between COM and NO terminals. This is the basic concept of a relay.

Basic Concepts of the Safety Relay
Image: Basic Relay

This normal relay protects both the circuits from damaging each other.

For example, if any issue occurs on the input side, then only the input circuit will be affected. No damage would happen on the outputs side.

But, in today’s advances in automation and instrumentation, the safety of the environment and electrical components is a crucial factor in designing the system.

In a normal relay, as mechanical contacts are used, they may weld or jam with each other after repeated cycle operation.

It is a rare condition but if the safety of the panel and system is a main criterion, then a normal relay would prove dangerous in this situation. It will happen like the coil is energized, but the contacts have not switched.

So suppose if an emergency stop contact is used at the input side and the output side is connected to a PLC input, then the contact will not be detected and the system will thus not stop, even if the switch is pressed.

Many European and American standards avoid the use of a standard relay in their control panel.

Safety Relay

For this condition, a safety relay is used. A safety relay is more advanced and technical in operation as compared to a normal relay. This ensures that it can be used for a fail-safe environment.

Safety relays are defined and made to satisfy various SIL (Safety Integrity Levels) applications.

Let us see some of its highlights:

A safety relay has an in-built self-monitoring feature. That means, if the contacts weld or get jammed, the relay will automatically turn off the circuit contact at both the input and output sides.

This happens because the correct opening and closing of these relays are tested automatically inside it in each on-off cycle. This ensures that the safety function works even in case of its internal components failure. 

Safety relays can detect fault at the input circuit during a fault.

They are generally used in combination with various safety relays or you can say in multiple numbers; which guarantees a completely safe environment for the operator to use the machine.

A safety relay is generally used for critical field devices which require hardcore safety monitoring, like

  • light curtains,
  • safety mats,
  • three-position devices,
  • two-hand control devices,
  • magnetic switches,
  • emergency stop buttons,
  • non-contact safety sensors,
  • interlock safety switches etc.

Some relays have a reset button in it, much like overload relays. This ensures that the operator will first identify and rectify the faults, and then press the button to again bring it into operation.

Nowadays, they also have communication ports integrated with them (Ethernet, Modbus, etc.) to exchange electrical data with the PLC or other control equipment.

One of the main distinguishing factors from a normal relay are it’s forcibly guided contacts.

That means, even are the contacts are going into a weld or jam condition, they are forcibly and mechanically guided to change their position; so that the problem does not occur.

This ensures that both the NO and NC contacts always work opposite with each other; as in normal operation.

Choosing a safety relay requires a sound knowledge of risk assessment factors and technology. ISO 12100 is normally used for this.

In industrial automation, we mostly have a PLC that is essential for system control but it does not inherently ensure safety. Safety measures, such as safety relays, safety PLCs, and proper safety programming, must be implemented to protect personnel and equipment.

So, if we use safety relays instead of a normal relay, the features discussed earlier will ensure a very safe environment; or you can say we can get a double safe environment.

Safety relays can detect wire breaks, faulty contactors, faulty safety actuators, short circuits, etc.

A safety relay detects wire breaks and faulty contactors/actuators by sending out electrical pulses through the wiring. By measuring the flow of current, the safety relay checks for welded contact sets and wire breaks.

Author: Viral Nagda

If you liked this article, then please subscribe to our YouTube Channel for Instrumentation, Electrical, PLC and SCADA video tutorials.

You can also follow us on Facebook and Twitter to receive daily updates.

Read Next:

  • Interposing Relay Panel
  • Which Instrument is Faulty?
  • Relays in Ladder Logic
  • Barriers in Electrical Panel
  • What is a Protective Relay?
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

System Architecture and Process Control Systems Philosophy
ON and OFF a Group of Outputs by One Push button PLC Logic
Free Industrial Control System (ICS) Cyber Security Training Course
Edge Detection in PLC Programming
Draw a Ladder Logic to switch ON-OFF a Bulb using a Toggle Switch ?
SCADA for Substation Automation
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
3 Comments
  • Engr. Amit Banerjee says:
    December 10, 2022 at 2:42 pm

    very much informative post…thank you very much.

    Reply
  • Ken McCoy says:
    June 22, 2023 at 9:25 pm

    The article has some very useful information and I don’t want to overlook this. It is benefical and has some good reference material. However, I felt compelled to address one point that was mentioned.

    The article states, “In automation, if there is PLC, then there is no need to worry about safety. The program written will ensure all the equipment is operated properly.” This is absolutely NOT true.

    Safety Relays and Safety Controllers are engineered and manufactured such that if they fail the safety circuit opens, thereby stopping the operations of equipment.

    A software engineer could have an error in their code that could allow unsafe operations of equipment. Also, Input and Output circuits of the PLC could become defective, again, thereby allowing unsafe operations of equipment.

    Reply
  • CHRIS KRAFFT says:
    September 19, 2023 at 6:11 pm

    Great article. Easy to understand. I also agree with the previous comment from Mr. McCoy. PLCs are not inherently safe, but must be programmed to be safe. Adding a safety PLC in addition to a safety relay can add additional safe-guards.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Introduction to Functional Block Diagram in Studio 5000
Direct Digital Control (DDC) Systems
Allen Bradley PLC ControlLogix Hardware
Siemens PLC Project: Automatic Parking with Vehicle Counter
Design a Water Pump PLC Program using CX-Programmer
Mixing Program with Timers and Counters in Omron PLC
How to Insert Block Calls in SCL Language?
Difference between Timer and Counter – PLC Basics

Keep Learning

Why Grounding

Basics of Grounding

Industrial motor control using PLC instruction list programming

PLC Instruction List for Motor Reverse and Forward Direction

PID Controller Functionality

PID Controller Loop Tuning Tips

Siemens PLC Programming OBs in Siemens TIA Portal

FC Function in Siemens PLC

Boolean Logic to PLC Programming

Boolean Logic to PLC Programming

How Twisted Wire Cables Eliminates Noise Voltage

Inductive Coupling Effects

Siemens PLC

#20 PLC Best Practices – Identify Critical Alerts

Simulation in Machine Expert HVAC

How to do Simulation in Schneider PLC?

Learn More

Example of feedback principle

Example of Feedback System

PLC programming for liquid mixing application code

PLC Mixing Logic in Liquids on EcoStruxure Machine Expert-Basic

Power Electronics Objective Questions

Three Phase Converters Objective Questions

Wireless Electric Vehicle Charging

Wireless Electric Vehicle Charging

Transmission Control Protocol

Difference Between TCP and UDP

Most Asked Questions on Servo Motor

Most Asked Questions on Servo Motor (Answers)

RTD-standards

How to calculate the tolerance of a RTD sensor

Compile Project in Tia Portal

Communication between Wincc and Tia Portal

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?