Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Capacitively Coupled Multistage Transistor Amplifier
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Capacitively Coupled Multistage Transistor Amplifier

Capacitively Coupled Multistage Transistor Amplifier

Last updated: September 27, 2016 5:11 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
2 Min Read
SHARE

Two or more amplifiers can be connected in a cascaded arrangement with the output of one amplifier driving the input of the next. Each amplifier in a cascaded arrangement is known as a stage. The basic purpose of a multistage arrangement is to increase the overall voltage gain.

For purposes of illustration, we will use the two-stage capacitively coupled amplifier in Figure. Note that both stages are identical common-emitter amplifiers with the output of the first stage capacitively coupled to the input of the second stage. Capacitive coupling prevents the dc bias of one stage from affecting that of the other but allows the ac signal to pass without attenuation because XC = 0 ohms at the frequency of operation. Notice, also, that the transistors are labeled Q1 and Q2.

Capacitively Coupled Multistage Transistor Amplifier

Loading Effects

In determining the voltage gain of the first stage, you must consider the loading effect of the second stage. Because the coupling capacitor C3 effectively appears as a short at the signal frequency, the total input resistance of the second stage presents an ac load to the first stage. Looking from the collector of Q1, the two biasing resistors in the second stage, R5 and R6, appear in parallel with the input resistance at the base of Q2.

In other words, the signal at the collector of Q1 “sees” R3, R5, R6, and Rin(base2) of the second stage all in parallel to ac ground. Thus, the effective ac collector resistance of Q1 is the total of all these resistances in parallel. The voltage gain of the first stage is reduced by the loading of the second stage because the effective ac collector resistance of the first stage is less than the actual value of its collector resistor, R3.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Different Types of Diodes
Basic Transistor Amplifier Circuit Principle
Transistors Questions & Answers
Combining Independent Current Sources in Parallel
PMMC Temperature Compensation
Shockley Diode Working Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Transistor as Amplifier
CRT Fluorescent Screen
Comparison of MOSFET and BJT
Capacitor Filter Working Principle
Insulators, Conductors and Semiconductors
N Type and P Type Semiconductors
Zener Diode Breakdown Characteristics
Limitations of Resistors

Keep Learning

Transistor Emitter Feedback Bias

Transistor Emitter Feedback Bias

Zener Diode Voltage Regulator Operation

Zener Diode Voltage Regulator Operation

Applications of Photo diodes

Applications of Photo diodes

Ideal Diode Characteristics

Ideal Diode Characteristics

Classification of Bridge Circuits

Classification of Bridge Circuits

JFET Working Animation

JFET Working Animation

principle of time base generator

Time Base Generator

Peak Inverse Voltage of Center Tap Rectifier

Peak Inverse Voltage of Center Tap Rectifier

Learn More

Substation Safety Clearances

Substation Safety Clearances

How to calculate Thermocouple Temperature by measuring the output millivoltage

Automatic Coffee Machine

Automatic Coffee Vending Machine – PLC Logic Programming

Safety Relief Valve Material Selection

Landline Telemetry Objective Questions

Landline Telemetry Objective Questions

Determine Resistance value of Resistors

Determine Resistance value of Resistors

WirelessHART mesh network

WirelessHART

SCADA Standards

SCADA for Substation Automation

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?