Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Burnout Function in Temperature Transmitter
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Temperature Measurement > Burnout Function in Temperature Transmitter

Burnout Function in Temperature Transmitter

The burnout function in a temperature transmitter is useful when RTD or thermocouple sensor fails and becomes short or open circuit.

Last updated: May 3, 2023 9:54 am
vicky
Temperature Measurement
No Comments
Share
4 Min Read
SHARE

Today we are going to discuss another interesting topic related to one function provided in the transmitter which plays a very important role in saving plant/equipment.

The role of the transmitter is a very basic one. It receives the input from a sensor and converts it into system understandable values i.e. it can be a 4-20 mA signal or FF signal or any other kind of signal depending on the instrument type.

For configuring this transmitter various parameters are to be configured during the commissioning of the transmitter like Device tag, Primary variable, Secondary variable, Tertiary variable, Range of all variables, LRV, URV, Engineering units, Damping, Transfer function (Linear/Square root), Display setting, and one very important parameter in temperature transmitter i.e. Burnout Function.

Burnout Function in Temperature Transmitter

Burnout Function in Temperature Transmitter

Have you ever thought about what happens when RTD or thermocouple fails?

Let me create one scenario. Suppose in the field, say RTD fails due to some reason and the resistance becomes too high (open connection) then the process will trip if there is an interlock on high temperature. Due to this trip, the plant shutdown may happen and a production loss would have occurred.

Think of another scenario where RTD fails and becomes a short circuit. For the PT100 RTD sensor, when resistance becomes zero then the equivalent temperature is -242.021 °C. But in real-time, Say the temperature is increasing in the plant and if it is crossed above the critical temperature value, the blast may occur, in that case, an incident may happen.

Now to overcome these issues, the burnout function needs to be implemented.

In burnout function, whenever a transmitter detects sensor failure (it may be a short circuit or open circuit), a defined current signal which is pre-configured in the transmitter is transmitted. We can configure a low value, high value, or some other defined value or last state (in a 4-20mA loop, high is 20 mA and low is 4 mA) as per our requirement.

Now the main question is how will the transmitter detect that the actual sensor has failed because some spurious readings also can create such a scenario.

So as per NAMUR NE  43 “When the loop current is below 3.6 mA or above 21 mA this is interpreted as a sensor fault. In order to avoid false alarms, the signal shall be present for at least 4 seconds before it is interpreted as sensor fault”

Now what setting needs to be implemented in the transmitter burnout function is to be decided by looking at the process.

One very important thing to be noted here is that whenever the burnout function is configured in the transmitter, then it should be clearly mentioned somewhere (written in the field or a list of such transmitters should be made) so that whenever an instrumentation technician/engineer goes for any activity on that transmitter, the necessary bypass has been done in the DCS or ESD system.

In some transmitters, burnout is also applied if the transmitter senses internal circuit failures.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Types of Thermocouples
Helix Bimetallic Thermometer Principle
Why 4 wire RTD Measurement Accuracy is better than 2 and 3 wire RTD?
Thermocouple Temperature Range Questions and Answers
Thermistor Working Principle
What is a Probe Thermometer? How to Calibrate and Use it?
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

RTD Calibration Procedure
Manually Interpreting Thermocouple Voltages
What is Thermowell and How-to choose Thermowell Probe Length ?
Calculate Temperature Transmitter Output
Thermocouples Law of Intermediate Metals
Thermocouple and its Principle
How a 4 Wire RTD Works ?
What is a Three-wire RTD ?

Keep Learning

RTD Calculator Software

RTD Calculator Software

Temperature Controller

What is a Temperature Controller? – How to Choose?

Insulation of Thermowell

Facts on Thermowell Insulation Thickness

General Specification of Thermowell

General Specification of Thermowell

Temperature Measurement Questions

Interview Questions on Temperature Measurement

Van Stone Type Thermowell

Types of Thermowells

Spiral bimetallic thermometer principle

Spiral Bimetallic Thermometer Principle

RTD Construction

Introduction to RTDs

Learn More

Tank car bonding at siding

Electrical Static Grounding Techniques

PLC Programming Example with Pushbutton and Motor

PLC Programming Example with Pushbutton and Motor

Simple Conveyor Control PLC Program

XG5000 Example of Simple Conveyor Control PLC Program

Power Electronics Objective Questions

Harmonic Reduction Objective Questions

Level Transmitter trend

Identify Level Control Loop Tuning Problems

Fire and Gas system Audible and Visual Alarms

Fire and Gas system Audible and Visual Alarms

Control Valve Parts

Basic Parts of Control Valves

Pressure Safety Valves Functional Testing

Pressure Safety Valves Functional Testing

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?