Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Series and Parallel Resistors
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Series and Parallel Resistors

Series and Parallel Resistors

Last updated: October 6, 2016 6:57 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
3 Min Read
SHARE

Combining Resistors

Relatively complicated resistor combinations can be replaced by a single equivalent resistor whenever we are not specifically interested in the current, voltage or power associated with any of the individual resistors.

Series Resistors

Consider the series combination of N resistors shown in (a) below:

Series and Parallel Resistors

We apply KVL:

v = v1 + v2 + … vN

and Ohm’s Law:

v = R1i + R2i + … RN i

= (R1 + R2 + … RN )i

and  then  compare  this  result  with  the  simple  equation  applying  to  the equivalent circuit shown in above Figure

v = Req . i

Thus, the value of the equivalent resistance for N series resistances is:

Req = R1 + R2 + …+ RN

Parallel Resistors

Parallel Resistors

We apply KCL:

i = i1 + i2 + … iN

and Ohm’s Law:

i = G1v + G2v + …GN v

= (G1  + G2+ …GN )v

whereas the equivalent circuit shown in above Figure

i = Geq v

and thus the value of the equivalent conductance for N parallel conductances is:

Geq = G1 + G2 + … + GN             (parallel)

In terms of resistance instead of conductance

combining-parallel-resistors

The special case of only two parallel resistors is needed often:

Combining two resistors in parallel

two-resistors-parallel-formula

Note that since Geq  = G1 + G2 then we may deduce that:

Geq  > G1  and  Geq  > G2

Hence:

parallel-resistors-formula

or:

Req  < R1   and   Req  < R2

Thus the equivalent resistance of two resistors in parallel is less than the value of either of the two resistors.

The special case of N resistors of equal value R in parallel is:

parallel-resistors-equation

Example

We want to find the current i in the circuit below:

parallel-resistors-circuit-example

In order to find i, we can replace series and parallel connections of resistors by their equivalent resistances. We begin by noting that the 1 W are in series. Combining them we obtain: are in series. We begin by noting that the 1 ohm are 3 ohm are in series. Combining them we obtain:

parallel-resistors-circuit-example-2

Note that it is not possible to display the original voltage v in this figure. Since the two 4 ohms resistors are connected in parallel, we can further simplify the circuit as shown below:

parallel-resistors-circuit-example-3

Here, the 5 ohms and 2 ohms resistors are in series, so we may combine them into one 7 ohms resistor.

Then, from Ohm’s Law, we have:

i = 28/7 = 4A

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Basics of Amplifiers Interview Questions
Varactor Diode Operation
Difference between ideal diode & conventional diode
Characteristics of Photo diode
Laser Diode Working Principle
Time Base Generator
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Light Emitting Diode Operation
Difference between Schottky Diode and PN junction Diode
Forward Bias & Reverse Bias Diode Working Animation
Comparison of Transistor Configurations
N Type and P Type Semiconductors
Working of NPN Transistor
Basic DC Power Supply Circuit
Transistor Stabilisation
Current Divider Rule
Permanent Magnet Moving Coil Instruments (PMMC)

Keep Learning

JFET Working Animation

JFET Working Animation

phototransistor symbols

Phototransistor Working Principle

How a Multi Color LED Works

How a Multi Color LED Works ?

Cathode Ray Tube (CRT)

Cathode Ray Tube (CRT)

Combining Independent Current Sources in Parallel

Combining Independent Current Sources in Parallel

Types-of-diodes

Different Types of Diodes

how-to-find-resistor-value

Limitations of Resistors

Electronic Symbols List

Electronic Symbols

Discover More

Mechanical Torsion Meter Principle

Mechanical Torsion Meter Principle

PLC control 4 machines with 1 button

CX-Programmer Tutorial: 1 Button To Activate 4 Different Machines

Siemens PLC Questions

Programmable Logic Controller (PLC) Questions and Answers – 11

Gas Detectors Practical Problems and Troubleshooting

Gas Detectors Practical Problems and Troubleshooting

Process-Variable-to-Percentage-Conversion

Formula for Process Variable to Percentage Conversion

Contextual HMI

What is Contextual HMI? – HMI Screens on a Mobile or Tablet

Sprocket Assembly and Bolting Segments

Bucket elevators Chain and teeth wear Problems

PLC Cooking Timer Example for Kitchen Automation

PLC Cooking Timer Example for Kitchen Automation

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?