Temperature Measurement

Thermocouple Properties, Temperature Ranges, Element Construction

Thermocouple Applications :

(J)–Iron vs Constantan (Most Common)

May be used in vacuum, oxidizing, reducing, and inert atmospheres. Heavier gauge wire is recommended for long term life above 1000°F since the iron element oxidizes rapidly at these temperatures.

(T)–Copper vs Constantan (Most Common Cold)

May be used in vacuum, oxidizing, reducing, and inert atmospheres. It is resistant to corrosion in most atmospheres. High stability at sub-zero temperatures and its limits of error are guaranteed at cryogenic temperatures.

(K)–Chromel vs Alumel (Most Common Real Hot)

Recommended for continuous use in oxidizing or inert atmospheres up to 2300°F (1260°C), especially above 1000°F. Cycling above and below 1800°F (1000°C), is not recommended due to EMF alteration from hysteresis effects. Should not be used in sulfurous or alternating reducing and oxidizing atmospheres unless protected with protection tubes. Fairly reliable and accurate at high temperatures.

(E)–Chromel vs Constantan

May be used in oxidizing or inert atmospheres, but not recommended for alternating oxidizing or inert atmospheres. Not subject to corrosion under most atmospheric conditions. Has the highest EMF produced per degree than any other standard thermocouple and must be protected from sulfurous atmospheres.

(S,R)–Platinum vs Platinum Rhodium (Most Common Real, Real Hot)

Recommended for use in oxidizing or inert atmospheres. Reducing atmospheres may cause excessive grain growth and drifts in calibration.

(N)–Nicrosil vs Nisil (New … Better Than “K”)

May be used in oxidizing, dry reducing, or inert atmospheres. Must be protected in sulfurous atmospheres. Very reliable and accurate at high temperatures. Can replace Type K thermocouples in many application.

(W)–Tungsten vs Rhenium

Recommended for use in vacuum, high purity hydrogen, or pure inert atmospheres. May be used at very high temperatures (2316°C), however, is inherently brittle.

Thermocouple Properties :

TYPE E-The negative wire has lower resistance in ohms per foot than the positive element for the same size wire.

TYPE J-The positive element is frequently rusty and is magnetic. It has a lower resistance in ohms per foot for the same size wire.

TYPE K-The negative element is slightly magnetic. It has a lower resistance in ohms per foot for the same size positive wire.

TYPE R or S-The negative wire is softer. The positive wire has a lower resistance in ohms per foot for the same size wire.

TYPE T-The negative wire is silver in appearance. The positive wire has a lower resistance in ohms per foot for the same size wire, and is usually copper colored.

TYPE N-The positive leg has a higher resistance in ohms per foot for the same size wire.

Note: When in doubt, twist the wire together, and connect opposite ends to a volt meter. Heat the twisted end with a cigarette lighter. If the volts go up – polarity is correct …

Thermocouple Facts

Thermocouple Facts

Note: To determine the limits of error in degrees C, multiply the limits of error in degrees F x 5/9.

Thermocouple Element Construction Details :

For high temperature applications 1000°F to 2300°F, new proprietary materials have been developed to perform better than the alloys used in the past.

U = HOSKINS 2300 : “…maintains special limits accuracy by up to 10 times longer than probes made from other cable.”

V = NICROBELL : “Sheathed Type N can be used to replace Platinum / Rhodium sensors up to a maximum continuous temperature of 2280°F…”

Thermocouple Temperature Limits

Thermoelement Material

You've successfully subscribed !

View Comments

Share

Recent Articles

  • PLC Tutorials

Example of Flip-Flop PLC Program for Lamps Application

Learn the example of flip-flop PLC program for lamps application using the ladder logic to…

4 days ago
  • PLC Tutorials

STAR DELTA Programming using PLC Controller

In this article, you will learn the STAR DELTA programming using PLC controller to start…

4 days ago
  • Instrumentation Design

Single and Three Phase Immersion Electrical Heaters Wiring Circuits

Lube oil consoles of rotary equipment packages in industrial process plants are usually equipped with…

1 day ago
  • Instrumentation Design

Immersion Heaters in Lube Oil Consoles

Rotating equipment packages such as pumps, compressors, turbines need the lube oil consoles for their…

4 days ago
  • PLC Tutorials

How to Blink Lights in Ladder Logic?

This article explains how to blink lights in ladder logic with a detailed explanation video…

3 weeks ago
  • PLC Tutorials

From Boolean Algebra to PLC Logic

In this article, a simple example will teach you the conversion from Boolean algebra to…

1 month ago