Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Testing a Transistor with a Digital Multimeter
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Basics > Testing a Transistor with a Digital Multimeter

Testing a Transistor with a Digital Multimeter

Last updated: April 30, 2018 9:18 am
Editorial Staff
Electronic Basics Electronic Devices & Circuits
1 Comment
Share
6 Min Read
SHARE

Several faults that can occur in the circuit and the accompanying symptoms are illustrated in Below Figure. Symptoms are shown in terms of measured voltages that are incorrect. If a transistor circuit is not operating correctly, it is a good idea to verify that VCC and ground are connected and operating. A simple check at the top of the collector resistor and at the collector itself will quickly ascertain if VCC is present and if the transistor is conducting normally or is in cutoff or saturation.

If it is in cutoff, the collector voltage will equal VCC; if it is in saturation, the collector voltage will be near zero. Another faulty measurement can be seen if there is an open in the collector path. The term floating point refers to a point in the circuit that is not electrically connected to ground or a “solid” voltage. Normally, very small and sometimes fluctuating voltages in the mV to low mV range are generally measured at floating points. The faults in Below Figure are typical but do not represent all possible faults that may occur.

Testing a Transistor with a Digital Multimeter

Testing a Transistor with Multimeter

Testing a Transistor with a DMM

A digital multimeter can be used as a fast and simple way to check a transistor for open or shorted junctions. For this test, you can view the transistor as two diodes connected as shown in Below Figure for both npn and pnp transistors. The base-collector junction is one diode and the base-emitter junction is the other.

Testing a Transistor with a DMM

A good diode will show an extremely high resistance (or open) with reverse bias and a very low resistance with forward bias. A defective open diode will show an extremely high resistance (or open) for both forward and reverse bias. A defective shorted or resistive diode will show zero or a very low resistance for both forward and reverse bias. An open diode is the most common type of failure. Since the transistor pn junctions are, in effect diodes, the same basic characteristics apply.

The DMM Diode Test Position

Many digital multimeters (DMMs) have a diode test position that provides a convenient way to test a transistor. A typical DMM, as shown in Below Figure, has a small diode symbol to mark the position of the function switch. When set to diode test, the meter provides an internal voltage sufficient to forward-bias and reverse-bias a transistor junction.

Transistor testing

When the Transistor Is Not Defective

In Figure (a), the red (positive) lead of the meter is connected to the base of an npn transistor and the black (negative) lead is connected to the emitter to forward-bias the base-emitter junction. If the junction is good, you will get a reading of between approximately 0.6 V and 0.8 V, with 0.7 V being typical for forward bias. In Figure (b), the leads are switched to reverse-bias the base-emitter junction, as shown. If the transistor is working properly, you will typically get an OL indication. The process just described is repeated for the base-collector junction as shown in Figure (c) and (d). For a pnp transistor, the polarity of the meter leads are reversed for each test.

When the Transistor Is Defective

When a transistor has failed with an open junction or internal connection, you get an open circuit voltage reading (OL) for both the forward-bias and the reverse-bias conditions for that junction, as illustrated in Figure (a). If a junction is shorted, the meter reads 0 V in both forward- and reverse-bias tests, as indicated in part (b). Some DMMs provide a test socket on their front panel for testing a transistor for the hFE (βDC) value. If the transistor is inserted improperly in the socket or if it is not functioning properly due to a faulty junction or internal connection, a typical meter will flash a 1 or display a 0. If a value of βDC within the normal range for the specific transistor is displayed, the device is functioning properly. The normal range of βDC can be determined from the datasheet.

Checking a Transistor with the OHMs Function

DMMs that do not have a diode test position or an hFE socket can be used to test a transistor for open or shorted junctions by setting the function switch to an OHMs range. For the forward-bias check of a good transistor pn junction, you will get a resistance reading that can vary depending on the meter’s internal battery. Many DMMs do not have sufficient voltage on the OHMs range to fully forward-bias a junction, and you may get a reading of from several hundred to several thousand ohms.

For the reverse-bias check of a good transistor, you will get an out-of-range indication on most DMMs because the reverse resistance is too high to measure. An out-of-range indication may be a flashing 1 or a display of dashes, depending on the particular DMM.

Even though you may not get accurate forward and reverse resistance readings on a DMM, the relative readings are sufficient to indicate a properly functioning transistor PN junction. The out-of-range indication shows that the reverse resistance is very high, as you expect. The reading of a few hundred to a few thousand ohms for forward bias indicates that the forward resistance is small compared to the reverse resistance, as you expect.

Testing a defective transistor

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Half Wave Rectifier Principle
100 Electronics and Electrical Projects for Engineering Students
What are Analog and Digital Signals? Differences, Examples
Difference Between LED and LCD
Transistor Stabilisation
Semiconductors Diodes Questions & Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • trevor says:
    August 14, 2016 at 9:55 pm

    good engineering stuff

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Full Wave Rectifier
Transistor Base Bias
What is a Memristor? Principle, Advantages, Applications
pi filter Operation
Basics of Voltage Regulator
Energy Diagrams of PN Junction & Depletion Region
Applications of Photo diodes
Circuit Elements and Types of Circuits

Keep Learning

Types of Potentiometers

Types of Potentiometers – What is a Potentiometer? – Applications

How to Test Diodes Using Multimeter

How to Test Diodes Using Multimeter

Motor contactors

What is Contactor ?

Transistor Voltage Divider Bias

Transistor Voltage Divider Bias

JFET Working Animation

JFET Working Animation

p-type-semiconductor

N Type and P Type Semiconductors

Measure Capacitance using Multimeter

How to Measure capacitance using Multimeter

phototransistor-circuit

Phototransistor Circuit Example

Learn More

Timer STL Programming

Timers using Statement List (STL) PLC Programming

How to Install Ultrasonic Level Transmitters 5

How to Install Ultrasonic Level Transmitters

Liquid Nitrogen in Instrumentation

Liquid Nitrogen in Instrumentation

Minimum Oil Circuit Breaker (MOCB) Spares & Service

Minimum Oil Circuit Breaker (MOCB) No Vendor Spares & Service

4-20ma-formulas-and-examples

4-20mA Formulas and Examples

Advances in Control System

Adaptive Control

Electromagnetic Fields Objective Questions

Electromagnetic Subject Quiz

Control Systems Questions & Answers

Control Systems Objective Questions & Answers – Set 1

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?