Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Concept of Stability in Control Systems
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Multiple Choice Questions > Concept of Stability in Control Systems

Concept of Stability in Control Systems

Last updated: November 27, 2021 5:41 pm
Editorial Staff
Multiple Choice Questions
No Comments
Share
6 Min Read
SHARE

Concept of Stability in Control Systems MCQ

1. Stability of a system implies that :

a) Small changes in the system input does not result in large change in system output
b) Small changes in the system parameters does not result in large change in system output
c) Small changes in the initial conditions does not result in large change in system output
d) All of the above mentioned

Answer: d

Explanation: Stability of the system implies that small changes in the system input, initial conditions, and system parameters does not result in large change in system output.

2. A linear time invariant system is stable if :

a) System in excited by the bounded input, the output is also bounded
b) In the absence of input output tends zero
c) Both a and b
d) System in excited by the bounded input, the output is not bounded

Answer: c

Explanation: A system is stable only if it is BIBO stable and asymptotic stable.

3. Asymptotic stability is concerned with:

a) A system under influence of input
b) A system not under influence of input
c) A system under influence of output
d) A system not under influence of output

Answer: b

Explanation: Asymptotic stability concerns a free system relative to its transient behavior.

4. Bounded input and Bounded output stability notion concerns with :

a) A system under influence of input
b) A system not under influence of input
c) A system under influence of output
d) A system not under influence of output

Answer: a

Explanation: BIBO stability concerns with the system that has input present.

5. If a system is given unbounded input then the system is:

a) Stable
b) Unstable
c) Not defined
d) Linear

Answer: c

Explanation: If the system is given with the unbounded input then nothing can be clarified for the stability of the system.

6. Linear mathematical model applies to :

a) Linear systems
b) Stable systems
c) Unstable systems
d) Non-linear systems

Answer: b

Explanation: As the output exceeds certain magnitude then the linear mathematical model no longer applies.

7. For non-linear systems stability cannot be determined due to:

a) Possible existence of multiple equilibrium states
b) No correspondence between bounded input and bounded output stability and asymptotic stability
c) Output may be bounded for the particular bounded input but may not be bounded for the bounded inputs
d) All of the mentioned

Answer: d

Explanation: For non-linear systems stability cannot be determined as asymptotic stability and BIBO stability concepts cannot be applied, existence of multiple states and unbounded output for many bounded inputs.

8. If the impulse response in absolutely integrable then the system is :

a) Absolutely stable
b) Unstable
c) Linear
d) Stable

Answer: a

Explanation: The impulse response must be absolutely integrable for the system to absolutely stable.

9. The roots of the transfer function do not have any effect on the stability of the system.

a) True
b) False

Answer: b

Explanation: The roots of transfer function also determine the stability of system as they may be real, complex and may have multiplicity of various order.

10. Roots with higher multiplicity on the imaginary axis makes the system :

a) Absolutely stable
b) Unstable
c) Linear
d) Stable

Answer: b

Explanation: Repetitive roots on the imaginary axis makes the system unstable.

11. Roots on the imaginary axis makes the system :

a) Stable
b) Unstable
c) Marginally stable
d) Linear

Answer: c

Explanation: Roots on the imaginary axis makes the system marginally stable.

12. If the roots of the have negative real parts then the response is ____________

a) Stable
b) Unstable
c) Marginally stable
d) Bounded

Answer: d

Explanation: If the roots of the have negative real parts then the response is bounded and eventually decreases to zero.

13. If root of the characteristic equation has positive real part the system is :

a) Stable
b) Unstable
c) Marginally stable
d) Linear

Answer: b

Explanation: The impulse response of the system is infinite when the roots of the characteristic equation has positive real part.

14. A linear system can be classified as :

a) Absolutely stable
b) Conditionally stable
c) Unstable
d) All of the mentioned

Answer: d

Explanation: A system can be stable, unstable and conditionally stable also.

15. ___________ is a quantitative measure of how fast the transients die out in the system.

a) Absolutely stable
b) Conditionally stable
c) Unstable
d) Relative Stability

Answer: d

Explanation: Relative Stability may be measured by relative settling times of each root or pair of roots.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Controllability & Observability
Time Domain Analysis
Pole Placement by State Feedback
Measurement and Instrumentation Objective Questions – Part 1
Time of Flight Mass Spectrometer
Measurement and Instrumentation Objective Questions – Part 4
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

MCQ on Flow Measurement
IR Instrumentation Questions & Answers
Hydrogen and Glass Electrodes Questions & Answers
Concepts of State, State Variables & State Model
Carbon Monoxide Questions & Answers
Stability of Nonlinear System – II
Assessment of Relative Stability Using Nyquist Criterion
Construction of Root Loci

Keep Learning

Online Analyzers Questions & Answers

Online Analyzers Questions & Answers

Liapunov’s Stability Analysis

Direct Method & Constructing of Liapunov for the Linear & Non-Linear System

Chromatography Questions & Answers

Liquid Chromatography Questions & Answers

UV Visible Spectrometers Questions and Answers

UV Visible Spectrometers Questions and Answers

Stability in Frequency Domain

Feedback Compensation

Frequency Response MCQ

Frequency Response MCQ

Feedback Characteristics of Control Systems

Linear Approximation of the Non-Linear System MCQ

Split-Range, Auto-Selector Ratio, And Cascade Systems

Split-Range, Auto-Selector, Ratio & Cascade Systems

Learn More

Quiz on Alternators, Motors, and Transformers

200+ Quiz on Alternators, Motors, and Transformers

Pressure Gauge Parts

Pressure Gauges with Bourdon Tube Principle

Basics of Vibration Measurement

Basics of Vibration Measurement

Logic Gates Symbols & Truthtables

Logic Gates Animation

Two-Liquid Manometer Principle

Two-Liquid Manometer Principle

Reliability of a Control System

Reliability of a Control System

Pirani Gauge Working Principle

Pirani Gauge Working Principle

flow Nozzle

Flow Nozzle Principle, Advantages, Disadvantages, Applications

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?