Practical Questions

Air Pressure Inside the Tank

Question:

A scuba diver’s air tank contains 2,000 PSI of air, as measured by a pressure gauge before descending into the water. The diver descends 50 feet into the water, where the surrounding water pressure caused by the water’s weight (called hydrostatic pressure) is approximately 22 PSI.

Assuming that the diver consumes an inconsequential amount of air from the tank during the 50 foot descent, express the air pressure inside the tank in terms of absolute pressure, gauge pressure, and differential pressure (the differential pressure between the tank and the surrounding hydrostatic pressure of the water).

Solution:

  • Absolute pressure = 2,014.7 PSIA.
  • Gauge pressure = 2,000 PSIG.
  • Differential pressure (between tank and water) = 1,978 PSID.

Gauge Pressure

Gauge pressure is simple: it is the figure initially measured by the pressure gauge (2,000 PSIG). Again, we are assuming that the diver has not significantly decreased the tank’s air pressure by consuming air from it as he or she descended to the specified depth.

In reality, the pressure in the tank would have decreased a bit in supplying the diver with air to breathe during the descent time.

Absolute Pressure

Absolute pressure is simply gauge pressure added to the pressure of Earth’s atmosphere.

Since the gauge pressure measured at the water’s surface was (obviously) at sea level, and atmospheric pressure at sea level is approximately 14.7 PSIG.

Absolute air pressure inside the tank is 2,000 PSI + 14.7 PSI = 2,014.7 PSIG.

Differential Pressure

Differential pressure is simply the difference (subtraction) between the tank’s gauge pressure of 2,000 PSI and the water’s hydrostatic pressure (gauge) of 22 PSI. This is equal to 1,978 PSID.

The same differential figure will be found even if atmospheric pressure is taken into consideration: the tank’s absolute air pressure is 2,014.7 PSIA and the water’s hydrostatic pressure is 36.7 PSIA (22 PSI + 14.7 PSI), resulting in a difference that is still 1,978 PSID.

The key here in figuring differential pressure is to always keep pressure units the same: don’t mix gauge and absolute pressures!

Read Next:

Credits: Tony R. Kuphaldt

You've successfully subscribed !
Share

Recent Articles

PLC Ladder Logic Design: Control 3 Motors with Toggle Switch
  • PLC Tutorials

PLC Ladder Logic Design: Control 3 Motors with Toggle Switch

PLC ladder logic design to control 3 motors with toggle switch and explain the program…

3 weeks ago
  • PLC Tutorials

VFD Simulator Download – Free Yaskawa V1000 Software

VFD simulator download: Master the online tool from the Yaskawa V1000 & programming software for…

3 days ago
  • PLC Tutorials

Conveyor Sorting Machine PLC Program with Calculation Function

The conveyor sorting machine is widely used in the packing industries using the PLC program…

6 days ago
  • PLC Tutorials

Example of Flip-Flop PLC Program for Lamps Application

Learn the example of flip-flop PLC program for lamps application using the ladder logic to…

6 days ago
  • PLC Tutorials

STAR DELTA Programming using PLC Controller

In this article, you will learn the STAR DELTA programming using PLC controller to start…

6 days ago
  • Instrumentation Design

Single and Three Phase Immersion Electrical Heaters Wiring Circuits

Lube oil consoles of rotary equipment packages in industrial process plants are usually equipped with…

4 days ago