Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Flame Ionization Detector (FID) Principle
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Analyzers > Flame Ionization Detector (FID) Principle

Flame Ionization Detector (FID) Principle

Last updated: November 15, 2018 9:37 am
Editorial Staff
Analyzers
No Comments
Share
2 Min Read
SHARE

Several different detector designs exist for process gas chromatographs. The two most common are the flame ionization detector (FID) and the thermal conductivity detector (TCD). Other detector types include the flame photometric detector (FPD), photoionization detector (PID), nitrogenphosphorus detector (NPD), and electron capture detector (ECD). All chromatograph detectors exploit some physical difference between the solutes and the carrier gas itself which acts as a gaseous solvent, so that the detector may be able to detect the passage of solute molecules (sample gas components) among carrier molecules.

Also Read : GC Detectors Questions & Answers

Flame Ionization Detectors

Flame ionization detectors work on the principle of ions liberated in the combustion of the sample species. Here, the assumption is that sample compounds will ionize inside of a flame, whereas the carrier gas will not. A permanent flame (usually fueled by hydrogen gas which produces negligible ions in combustion) serves to ionize any gas molecules exiting the chromatograph column that are not carrier gas. Common carrier gases used with FID sensors are helium and nitrogen, which also produce negligible ions in a flame. Molecules of sample encountering the flame ionize, causing the flame to become more electrically conductive than it was with only hydrogen and carrier gas. This conductivity causes the detector circuit to respond with a measurable electrical signal.

A simplified diagram of an FID is shown here:

Flame Ionization Detector (FID)

Hydrocarbon molecules happen to easily ionize during combustion, which makes the FID sensor well-suited for GC analysis in the petrochemical industries where hydrocarbon composition is the most common form of analytical measurement. It should be noted, however, that not all carboncontaining compounds significantly ionize in a flame. Examples of non-ionizing organic compounds include carbon monoxide, carbon dioxide, and carbon sulfide. Other gases of common industrial interest such as water, hydrogen sulfide, sulfur dioxide, and ammonia likewise fail to ionize in a flame and thus are undetectable using an FID.

Also Read : GC Principle

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Sodium Analyzer Problems and Troubleshooting Steps
Tunable Diode Laser Analyzer Working Principle
How to Calibrate the Eddy Current Conductivity Meter?
pH Transmitter Problem
Industrial Applications of Chromatographs
Total Organic Carbon Analyzers Questions and Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Working Principle of Gas chromatograph
Non-Dispersive Analyzers
Humidity Measurement Principle
Basics of ORP Measurement
Difference Between Absolute and Relative Humidity
Automated Calibration
Technologies for Oxygen Gas Measurement
Dew Point Meter Principle

Keep Learning

Thermal Conductivity Detector (TCD)

Thermal Conductivity Detector (TCD) Principle

Ozone analyzer principle

Ozone Analyzer Working Principle

Electrical Conductivity Meter

What is the Application of Electrical Conductivity Meter?

Chlorine dioxide measurement principle

Chlorine dioxide Analyzer Principle

Ambient Air Quality Monitoring System Principle

Ambient Air Quality Monitoring System Principle

Humidity sensor Working Principle

Humidity Sensor Working Principle

Gas-chromatograph-Working-Principle

Gas chromatograph Working Animation

DO Analyzer Working Principle

Dissolved Oxygen Analyzer Working Principle

Learn More

Manual sequential logic in Schneider PLC

Programming Schneider PLC Manual Sequential Machine

Convert-Transmitter-Output-in-Percentage-to-Process-Variable

Conversion of Transmitter Output in Percentage to Process Variable

FIFO and LIFO Sequences in PLC

What are FIFO and LIFO Sequences in PLC?

Single-Bed Demineralizer

Demineralizers

Electrical Machines Questions and Answers

Electrical Machines Loss Dissipation Quiz

Sugar Industry Logics

Mill Interlocks in the Sugar Industry

process chemical analyzer calibration

Automated Calibration

Calculate Power in Parallel RL Circuit

Calculate Power in Parallel RL Circuit

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?