Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Thermocouple Properties, Temperature Ranges, Element Construction
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Temperature Measurement > Thermocouple Properties, Temperature Ranges, Element Construction

Thermocouple Properties, Temperature Ranges, Element Construction

Last updated: November 24, 2017 6:19 am
Editorial Staff
Temperature Measurement
1 Comment
Share
4 Min Read
SHARE

Thermocouple Applications :

(J)–Iron vs Constantan (Most Common)

Contents
Thermocouple Applications :Thermocouple Properties :Thermocouple FactsThermocouple Element Construction Details :Thermocouple Temperature LimitsThermoelement Material

May be used in vacuum, oxidizing, reducing, and inert atmospheres. Heavier gauge wire is recommended for long term life above 1000°F since the iron element oxidizes rapidly at these temperatures.

(T)–Copper vs Constantan (Most Common Cold)

May be used in vacuum, oxidizing, reducing, and inert atmospheres. It is resistant to corrosion in most atmospheres. High stability at sub-zero temperatures and its limits of error are guaranteed at cryogenic temperatures.

(K)–Chromel vs Alumel (Most Common Real Hot)

Recommended for continuous use in oxidizing or inert atmospheres up to 2300°F (1260°C), especially above 1000°F. Cycling above and below 1800°F (1000°C), is not recommended due to EMF alteration from hysteresis effects. Should not be used in sulfurous or alternating reducing and oxidizing atmospheres unless protected with protection tubes. Fairly reliable and accurate at high temperatures.

(E)–Chromel vs Constantan

May be used in oxidizing or inert atmospheres, but not recommended for alternating oxidizing or inert atmospheres. Not subject to corrosion under most atmospheric conditions. Has the highest EMF produced per degree than any other standard thermocouple and must be protected from sulfurous atmospheres.

(S,R)–Platinum vs Platinum Rhodium (Most Common Real, Real Hot)

Recommended for use in oxidizing or inert atmospheres. Reducing atmospheres may cause excessive grain growth and drifts in calibration.

(N)–Nicrosil vs Nisil (New … Better Than “K”)

May be used in oxidizing, dry reducing, or inert atmospheres. Must be protected in sulfurous atmospheres. Very reliable and accurate at high temperatures. Can replace Type K thermocouples in many application.

(W)–Tungsten vs Rhenium

Recommended for use in vacuum, high purity hydrogen, or pure inert atmospheres. May be used at very high temperatures (2316°C), however, is inherently brittle.

Thermocouple Properties :

TYPE E-The negative wire has lower resistance in ohms per foot than the positive element for the same size wire.

TYPE J-The positive element is frequently rusty and is magnetic. It has a lower resistance in ohms per foot for the same size wire.

TYPE K-The negative element is slightly magnetic. It has a lower resistance in ohms per foot for the same size positive wire.

TYPE R or S-The negative wire is softer. The positive wire has a lower resistance in ohms per foot for the same size wire.

TYPE T-The negative wire is silver in appearance. The positive wire has a lower resistance in ohms per foot for the same size wire, and is usually copper colored.

TYPE N-The positive leg has a higher resistance in ohms per foot for the same size wire.

Note: When in doubt, twist the wire together, and connect opposite ends to a volt meter. Heat the twisted end with a cigarette lighter. If the volts go up – polarity is correct …

Thermocouple Facts

Thermocouple Facts

Thermocouple Temperature Range

Note: To determine the limits of error in degrees C, multiply the limits of error in degrees F x 5/9.

Thermocouple Element Construction Details :

Thermocouple Melting Point

For high temperature applications 1000°F to 2300°F, new proprietary materials have been developed to perform better than the alloys used in the past.

U = HOSKINS 2300 : “…maintains special limits accuracy by up to 10 times longer than probes made from other cable.”

V = NICROBELL : “Sheathed Type N can be used to replace Platinum / Rhodium sensors up to a maximum continuous temperature of 2280°F…”

Thermocouple Temperature Limits

Thermocouple Temperature Limits

Thermoelement Material

Thermoelement Material

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Ambient Temperature Effects on RTD
Thermocouples Green Rot Effect
RTD Standards
Temperature Switch Principle
Thermocouple Working Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
1 Comment
  • Smita says:
    January 10, 2018 at 7:46 am

    Day today any how we are using these sensors but I don’t know how its work.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Relationship between Temperature Scales

Relationship between Temperature Scales

How Does an Infrared Thermometer Work

How Does an Infrared Thermometer Work?

Thermocouple Standard

Thermocouple Details

Thermovcouple Circuit

Thermocouple and its Principle

Thermowell Problems

Thermowell Problems

Radiation Pyrometer Working Principle

Radiation Pyrometer Working Principle

Temperature Measurement Questions

Interview Questions on Temperature Measurement

Pressure and Temperature Gauges

Pressure and Temperature Gauges

More Articles

Electrical Machines Objective Questions

Electrical Machines MCQ Series 10

PLC Multiple Choice Questions

PLC Multiple Choice Questions

foundation-fieldbus-vs-profibus

Comparison between Foundation Fieldbus and Profibus

Digital Control Systems

Signal Reconstruction

Do’s and Don'ts in PLC

Do’s and Don’ts in PLC

Open Tank DP Level Measurement

Open Tank DP Level Transmitter Calculations

Falling Ball Viscometer Principle

Falling Ball Viscometer Principle

diaphragm-pressure-gauge

Diaphragm Pressure Sensors

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?