Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Zener Diode Voltage Regulator Operation
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Zener Diode Voltage Regulator Operation

Zener Diode Voltage Regulator Operation

Last updated: November 17, 2017 9:05 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
3 Min Read
SHARE

The zener diode can be used as a type of voltage regulator for providing stable reference voltages. In this section, you will see how zeners can be used as voltage references, regulators, and as simple limiters or clippers.

Zener Regulation with a Variable Input Voltage

Zener diode regulators can provide a reasonably constant dc level at the output, but they are not particularly efficient. For this reason, they are limited to applications that require only low current to the load. The Below Figure illustrates how a zener diode can be used to regulate a dc voltage. As the input voltage varies (within limits), the zener diode maintains a nearly constant output voltage across its terminals.

However, as VIN changes, IZ will change proportionally so that the limitations on the input voltage variation are set by the minimum and maximum current values (IZK and IZM) with which the zener can operate. Resistor R is the series current-limiting resistor. The meters indicate the relative values and trends.

Zener Diode Voltage Regulator Operation

Fig (a) : As the input voltage increases, the output voltage remains nearly constant (IZK < IZ < IZM).

Zener Diode Voltage Regulator

Fig (b) : As the input voltage decreases, the output voltage remains nearly constant (IZK < IZ < IZM).

Example :

To illustrate regulation, let’s use the ideal model of the 1N4740A zener diode (ignoring the zener resistance) in the circuit shown below. The absolute lowest current that will maintain regulation is specified at Izk which for the 1N4740A is 0.25 mA and represents the no-load current. The maximum current is not given on the datasheet but can be calculated from the power specification of 1 W, which is given on the datasheet. Keep in mind that both the minimum and maximum values are at the operating extremes and represent worst-case operation.

Zener Diode Circuit

Zener Diode Circuit Formula

For the minimum zener current, the voltage across the 220 ohms resistor is

Vr = Izk.R = (0.25 mA)(220 ohms) = 55 mV

Since VR = VIN – VZ,

Vin(min) = VR + VZ = 55 mV + 10 V = 10.055 V

For the maximum zener current, the voltage across the 220 ohms resistor is

VR = IzmR = (100 mA)(220 ohms) = 22 V

Therefore,

VIN(max) = 22 V + 10 V = 32 V

This shows that this zener diode can ideally regulate an input voltage from 10.055 V to 32 V and maintain an approximate 10 V output. The output will vary slightly because of the zener impedance, which has been neglected in these calculations.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Transistor as an Amplifier in Common Emitter
Tunnel Diode Working Principle
Short Circuit and Open Circuit
What is a Memristor? Principle, Advantages, Applications
Applications of Photo diodes
Diode Clampers Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Transistor Collector Characteristic Curves
Transistor as Amplifier
Ripple Voltage in Rectifiers
Transistor Voltage Divider Bias
Shockley Diode Working Principle
Laser Diode Working Principle
Comparison of Half wave Rectifiers and Full wave Rectifiers
Capacitively Coupled Multistage Transistor Amplifier

Keep Learning

Combining Independent Current Sources in Parallel

Combining Independent Current Sources in Parallel

Insulators, Conductors and Semiconductors

Types-of-diodes

Different Types of Diodes

Field Instruments Questions and Answers

Basics of Amplifiers Interview Questions

Diodes Voltage Quadrupler

Diodes Voltage Quadrupler

diode-limiter-principle

Diode Limiters/Clippers Operation

Photodiode as Variable Resistance Device

Photodiode as Variable Resistance Device

Troubleshooting a Biased Transistor

Troubleshooting a Biased Transistor

Learn More

PLC Program for Conveyor System

PLC Conveyor Ladder Logic Program

Electrical Machines Questions and Answers

Rotating Machines Electrical Quiz

Feedback Characteristics of Control Systems

Feedback and Non-feedback Systems Objective Questions

What is Blowdown Valve (BDV)

What is Blowdown Valve (BDV)?

Stability in Frequency Domain

Mathematical Preliminaries

PLC Timer Application in Security Camera Recording

PLC Timer Application in Security Camera Recording

D’Arsonval Movement

D’Arsonval Movement

Material Certificate versus Positive Material Identification (PMI)

Material Certificate versus Positive Material Identification (PMI)

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?