Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Types of Generators
Share
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Machines > Types of Generators

Types of Generators

Last updated: March 7, 2016 1:17 pm
Editorial Staff
Electrical Machines
No Comments
Share
3 Min Read
SHARE

Essentially, there are two basic types of generators:

• DC generators
• AC generators: Asynchronous (Induction) generators and Synchronous generators

INDUCTION GENERATORS

The induction generator is nothing more than an induction motor driven above its synchronous speed by an amount not exceeding the full load slip the unit would have as a motor. Assuming a full load slip of 3%, a motor with a synchronous speed of 1200 rpm would have a full load speed of 1164 rpm. This unit could also be driven by an external prime mover at 1236 rpm for use as an induction generator.

The induction generator requires one additional item before it can produce power – it requires a source of leading VAR’s for excitation. The VAR’s may be supplied by capacitors (this requires complex control) or from the utility grid. Induction generators are inexpensive and simple machines, however, they offer little control over their output. The induction generator requires no separate DC excitation, regulator controls, frequency control or governor.

SYNCHRONOUS GENERATORS

Synchronous generators are used because they offer precise control of voltage, frequency, VARs and WATTs. This control is achieved through the use of voltage regulators and governors. A synchronous machine consists of a stationary armature winding (stator) with many wires connected in series or parallel to obtain the desired terminal voltage.

The armature winding is placed into a slotted laminated steel core. A synchronous machine also consists of a revolving DC field – the rotor. A mutual flux developed across the air gap between the rotor and stator causes the interaction necessary to produce an EMF. As the magnetic flux developed by the DC field poles crosses the air gap of the stator windings, a sinusoidal voltage is developed at the generator output terminals. This process is called electromagnetic induction.

The magnitude of the AC voltage generated is controlled by the amount of DC exciting current supplied to the field. if “FIXED” excitation were applied, the voltage magnitude would be controlled by the speed of the rotor (E=4.44fnBA), however, this would necessitate a changing frequency! Since the frequency component of the power system is to be held constant, solid state voltage regulators or static exciters are commonly used to control the field current and thereby accurately control generator terminal voltage.

The frequency of the voltage developed by the generator depends on the speed of the rotor and the number of field poles. For a 60 Hz system, Frequency = speed(rpm)*pole pairs/60.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

AC Motor Speed Control
Different Types of Transformers
Why Damper windings used in synchronous motors
Advantages & Disadvantages Induction Motor
Zigzag Transformers Theory
Why rating of Synchronous Generators and Alternators in MVA or KVA
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Synchronous Motor Working Principle
Advantages of Hydrogen cooling in Synchronous Generators
Advantages and Disadvantages of Slip Ring Induction Motor
Parallel Operation of Alternators
Star to Delta and Delta to Star Conversion Formula
Transformer Tap Changing Working Principle
Synchronous Generator Salient Pole vs Non Salient Pole
Electrical Motor Starter Circuits

Keep Learning

Transformer Open and Short Circuit Tests

Electrical-Switches-Working-Animation

Difference between Star and Delta Connections

Difference between Permanent Magnet BLDC and DC Motor

Specific-Conductance-Calibration-Procedure

Types of AC Motors and DC Motors

Differences Between AC and DC Motors

Synchronous Motor Is Not Self Starting?

Motor Star Delta Connections

How Motor Star Delta Starter Works ?

VFD circuit

AC Motor Braking

Learn More

Control Valve Tips and Tricks

Control Valve Tips and Tricks

Siemens OB Blocks

Siemens PLC Organization Blocks (OB)

Useful Trigonometry Website for Students Math Help

The Impact of Knowledge Management Platforms on Business Operations

Reasons to Calibrate Flowmeters

Reasons to Calibrate Different Types of Flow Meters

Electric Circuits Objective Questions

Electric Circuits Objective Questions – Set 15

Automation in Logistics Industry

Automation in Logistics Industry

Tilting Pad Bearing

8000 RPM 8000 kW Turbine Problem

Sulfur Hexafluoride Gas (SF6) Properties

Sulfur Hexafluoride Gas (SF6) Properties

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?