Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Types of Generators
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Machines > Types of Generators

Types of Generators

Last updated: March 7, 2016 1:17 pm
Editorial Staff
Electrical Machines
No Comments
Share
3 Min Read
SHARE

Essentially, there are two basic types of generators:

• DC generators
• AC generators: Asynchronous (Induction) generators and Synchronous generators

INDUCTION GENERATORS

The induction generator is nothing more than an induction motor driven above its synchronous speed by an amount not exceeding the full load slip the unit would have as a motor. Assuming a full load slip of 3%, a motor with a synchronous speed of 1200 rpm would have a full load speed of 1164 rpm. This unit could also be driven by an external prime mover at 1236 rpm for use as an induction generator.

The induction generator requires one additional item before it can produce power – it requires a source of leading VAR’s for excitation. The VAR’s may be supplied by capacitors (this requires complex control) or from the utility grid. Induction generators are inexpensive and simple machines, however, they offer little control over their output. The induction generator requires no separate DC excitation, regulator controls, frequency control or governor.

SYNCHRONOUS GENERATORS

Synchronous generators are used because they offer precise control of voltage, frequency, VARs and WATTs. This control is achieved through the use of voltage regulators and governors. A synchronous machine consists of a stationary armature winding (stator) with many wires connected in series or parallel to obtain the desired terminal voltage.

The armature winding is placed into a slotted laminated steel core. A synchronous machine also consists of a revolving DC field – the rotor. A mutual flux developed across the air gap between the rotor and stator causes the interaction necessary to produce an EMF. As the magnetic flux developed by the DC field poles crosses the air gap of the stator windings, a sinusoidal voltage is developed at the generator output terminals. This process is called electromagnetic induction.

The magnitude of the AC voltage generated is controlled by the amount of DC exciting current supplied to the field. if “FIXED” excitation were applied, the voltage magnitude would be controlled by the speed of the rotor (E=4.44fnBA), however, this would necessitate a changing frequency! Since the frequency component of the power system is to be held constant, solid state voltage regulators or static exciters are commonly used to control the field current and thereby accurately control generator terminal voltage.

The frequency of the voltage developed by the generator depends on the speed of the rotor and the number of field poles. For a 60 Hz system, Frequency = speed(rpm)*pole pairs/60.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Synchronous Generator Salient Pole vs Non Salient Pole
Zigzag Transformers Theory
100+ Questions and Answers on Motors and Generators
Losses in a DC Generator
Synchronous Motor Starting Methods
Use of line reactors
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Induction Motors Faults and Protection
Types of AC Motors and DC Motors
Basics of AC Induction Motors
Synchronous Motor Working Principle
Advantages and Disadvantages of Squirrel Cage Induction motor
Synchronous Motor Is Not Self Starting?
Advantages & Disadvantages of Synchronous Motors
Stepper Motor Basics, Types, Modes, Wiring, Questions

Keep Learning

Difference Between Squirrel Cage and Slip Ring Motors

Importance of Hysteresis Loop

Motor Primary Resistance Starter

Electrical Motor Starter Circuits

DC motor speed control

DC Motor Speed Control

6.6kV HV Induction motor Protection

What happen When Synchronous Generator loss Excitation

Differences Between AC and DC Motors

Advantages of Hydrogen cooling in Synchronous Generators

Learn More

Electrical Machines Questions and Answers

Synchronous Machine Multiple Choice Questions

Orifice Taps

Orifice Plate Tapping – Orifice Plate Taps

Level Loop Troubleshooting

Identify Faults in PID Control Loop

Selection Criteria of PH Analyzer

Selection Criteria of pH Analyzers

Frequency Response MCQ

Experimentation of Transfer Function

Shunt-Wound DC Motor

Shunt-Wound Motor Operation

PLC Program for Stage Control Curtains and Stage Elevation

PLC Program for Stage Control: Curtains and Stage Elevation

Flow Meter Questions and Answers

Flow Meter Questions and Answers

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?