By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Transformer Losses and Efficiency
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Ask
  • Courses
  • Videos
  • Q & A
  • EE
  • Measure
  • Control
  • More
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Theory > Transformer Losses and Efficiency
Electrical Theory

Transformer Losses and Efficiency

Last updated: August 7, 2018 2:30 pm
Editorial Staff
Share
2 Min Read
SHARE

All transformers have copper and core losses. Copper loss is power lost in the primary and secondary windings of a transformer due to the ohmic resistance of the windings.

Copper loss, in watts, can be found using below Equation.

Copper Loss = IP2 RP + IS2 RS

where

IP = primary current

IS = secondary current

RP = primary winding resistance

RS = secondary winding resistance

Core losses are caused by two factors: hysteresis and eddy current losses. Hysteresis loss is that energy lost by reversing the magnetic field in the core as the magnetizing AC rises and falls and reverses direction.

Eddy current loss is a result of induced currents circulating in the core.

The efficiency of a transformer can be calculated using below Equations.

Transformer Efficiency and Loses Formula

where

PF = power factor of the load

Example 1:

A 5:1 step-down transformer has a full-load secondary current of 20 amps. A short circuit test for copper loss at full load gives a wattmeter reading of 100 W. If RP = 0.3Ω, find RS and power loss in the secondary.

Solution :

Copper Loss = IP2 RP + IS2 RS   =  100 W

To find IP

Transformer Current Ratio Equation

IP = (NS/NP) IS

IP = (1/5) 20 = 4 amps

To find RS

IS2 RS   =  100 – IP2 RP

RS   =  (100 – IP2 RP ) / IS2

RS   = (100 – 42  x 0.3 ) / 202

RS   = 0.24

Power loss in secondary = IS2 RS   = 202 x 0.24 = 96 W

Example 2:

An open circuit test for core losses in a 10 kVA transformer gives a reading of 70 W. If the PF of the load is 90%, find efficiency at full load.

Solution :

Transformer Efficiency at Full Load

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Transformer Impedance Ratio
4-Wire, Three-Phase Delta Wiring System
AC Generator Nameplate Ratings
Inductor
Transformer Theory of Operation
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
3 Comments
  • Hom Nath Chaulagain says:
    February 6, 2020 at 10:07 am

    How is transformer rating in kva?

    Reply
    • Kazi Mahidul Islam says:
      March 9, 2023 at 12:25 pm

      Since Transformer doesnt produce any power rather than just only transform the Voltage and Current into high to low and low to high, for which Voltage and Ampere is related. Thats why its only rating in VA. and for larger transformer KVA and MVA is used for the rating of a transformer.

      Reply
  • Jhon Fel Dawa says:
    April 12, 2023 at 8:07 am

    where did the copper loss of 100 W came from i the second problem?

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
206kSubscribersSubscribe
38kFollowersFollow

Latest

Top Non-PLC Certification Courses for Automation Professionals
Top Non-PLC Certification Courses for Automation Professionals
Common
Things You Need to Know About DeviceNet
Things You Need to Know About DeviceNet
Communication
Why is IEC 60269 Important
Why is IEC 60269 Important? – Electrical Applications
Standards
NAMUR OPEN ARCHITECTURE
What is NAMUR OPEN ARCHITECTURE?
Control Systems

You Might also Like

Parallel Circuit
Electrical Theory

Parallel Circuit

Editorial Staff
Editorial Staff
July 23, 2018
Parallel RLC Circuit
Electrical Theory

Impedance in RLC Circuits

Editorial Staff
Editorial Staff
July 31, 2018
Power Factor Meter Principle
Electrical Theory

Power Factor Meter Principle

Editorial Staff
Editorial Staff
August 13, 2018
Electric Open Circuit
Electrical Theory

Series Open Circuit Faults

Editorial Staff
Editorial Staff
July 25, 2018
Parallel RLC Circuit
Electrical Theory

Resonance, Resonant Frequency, Series and Parallel Resonance

Editorial Staff
Editorial Staff
July 30, 2018
AC generator Voltage Regulators
Electrical Theory

AC Generator Voltage Regulators

Editorial Staff
Editorial Staff
August 5, 2018
//

Inst Tools

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”847″]

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?