Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: McLeod Gauge Working Principle
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Pressure Measurement > McLeod Gauge Working Principle

McLeod Gauge Working Principle

Last updated: July 15, 2019 12:43 pm
Editorial Staff
Pressure Measurement
No Comments
Share
3 Min Read
SHARE

Measurement of vacuum by two methods :

1. Direct measurement

Resulting in a displacement caused by the action of force [Spiral Bourdon tubes, flat or corrugated diaphragm, capsules and various other manometers]

Contents
1. Direct measurement2. Indirect measurement or inferential methodsMcLeod gauge

2. Indirect measurement or inferential methods

Pressure is determined through the measurement of certain pressure controlled properties such as volume, thermal conductivity etc.

McLeod Gauge Vacuum Gauge is a inferential method of measuring vacuum

McLeod gauge

The working of McLeod Gauge is based on Boyles‟ fundamental equation.

Boyles law

where p and V refer to pressure and volume respectively and subscripts 1 and 2 refer to initial and final conditions. Conventional McLeod gauge is made of glass. Refer Below Fig, It consists of the capillary „C‟, bulb „B‟ and the mercury sump which is connected to the lower end of the glass tube such that it can be moved up and down.

The pressure to be measured (the unknown pressure) is connected to the upper end of the glass part. When the mercury level in the gauge is below the cut off „F‟, the unknown pressure fills the gauge including the bulb B and capillary C.

When the mercury sump is moved up, the level in the gauge rises and when it reaches the cut off „F‟ a known volume of gas at pressure to be measured is trapped in bulb B and capillary C.

McLeod Gauge

Mercury is then forced up into the bulb and capillary. Assume the sump is raised to such a level that the gas at the pressure to be measured which filled the volume above the cut off is now compressed to the volume represented by the column h. Suppose the original volume after then mercury reaches F is V0 . This is at a pressure being measured p1

Mc Leod gauge formula

Applications of McLeod gauge

McLeod gauge is used mainly for calibrating other inferential type of gauges. The shortcomings of the McLeod gauge are its fragility and the inability to measure continuously. The vapor pressure of Mercury sets the lower limit of measurement range of the gauge.

Advantages of the McLeod Gauge:

  • It is independent of the gas composition.
  • It serves as a reference standard to calibrate other low pressure gauges.
  • A linear relationship exists between the applied pressure and h
  • There is no need to apply corrections to the McLeod Gauge readings.

Limitations of McLeod Gauge:

  • The gas whose pressure is to be measured should obey the Boyle’s law
  • Moisture traps must be provided to avoid any considerable vapor into the gauge.
  • It measure only on a sampling basis.
  • It cannot give a continuous output.
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Fine Wire Strain Gauge Principle
Impulse Piping standards for Field instruments
Pressure Measurement using Manometer
Pressure and Temperature Gauges
Functions of Pressure Detectors
Differential Pressure Transmitter Calibration Procedure
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

When to use a Diaphragm Seal?
Impulse Line – Purpose & Tapping Point Location
Closed Tank Remote Seal Capillary type DP Transmitter
Inductance Type Pressure Transducers Principle
Interview Questions on Pressure Measurement
What is a Barometer?
Remote Diaphragm Seal Transmitter for Vacuum Application
Differential Pressure Transmitter with 5 Way Manifold Valve

Keep Learning

5-valve manifold

Pressure Transmitter Vent fittings

Capacitance Pressure Sensor Works

How Capacitive Pressure Sensor Works ?

Pressure Transmitter Circuit

Pressure Transmitter Circuit

Strain Gauge Pressure Sensor Principle

Strain Gauge Pressure Sensor Principle

DP transmitter with Manifold

Pressure Transmitter Manifolds

Differential Pressure Transmitters Static Pressure

What is Static Pressure Limit in DP Transmitter ?

Differential Pressure Gauge Principle

Piston Type Differential Pressure Gauge Principle

Pressure Gauge with Block and Bleed Valves

Pressure Gauge with Block and Bleed Valves

Learn More

Dome Valve Principle

Dome Valve Working Principle

Data Preparation for AI

Data Preparation for AI: For Successful Machine Learning

How to Read an Electrical Wiring Diagram

How to Read an Electrical Wiring Diagram?

What is a Power Transformer

What is a Power Transformer? – Components and Types

Robotic Instrumentation Objective Questions

Robotic Instrumentation Objective Questions

Opposite Acting Control Valves Application

PLC Ladder Logic for Opposite Acting Control Valves Application

Types of Can Open network topologies

CANOpen Network Topology

Measuring Circuit Voltage

Voltmeters

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?