Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Bellows, Diaphragms and Bourdon Tubes
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Pressure Measurement > Bellows, Diaphragms and Bourdon Tubes

Bellows, Diaphragms and Bourdon Tubes

Last updated: June 10, 2018 6:07 pm
Editorial Staff
Pressure Measurement
No Comments
Share
5 Min Read
SHARE

Bellows, Diaphragms and Bourdon Tubes

Mechanical pressure-sensing elements include the bellows, the diaphragm, and the bourdon tube. Each of these devices converts a fluid pressure into a force. If unrestrained, the natural elastic properties of the element will produce a motion proportional to the applied pressure.

Bellows, Diaphragm and Bourdon Tube

Bellows :

Bellows resemble an accordion constructed from metal instead of fabric. Increasing pressure inside a bellows unit causes it to elongate.

Also See : Bellows Working Animation

A photograph of a bellows is shown here:

Bellows

Diaphragms :

A diaphragm is nothing more than a thin disk of material which bows outward under the influence of a fluid pressure. Many diaphragms are constructed from metal, which gives them spring-like qualities. Some diaphragms are intentionally constructed out of materials with little strength, such that there is negligible spring effect. These are called slack diaphragms, and they are used in conjunction with external mechanisms (e.g. springs) producing the necessary restraining force to prevent damage from applied pressure.

Also See : Diaphragms Working Animation

The following photograph shows the mechanism of a small pressure gauge using a brass diaphragm as the sensing element:

diaphragm Pressure gauge

As pressure is applied to the rear of the diaphragm, it distends upward (away from the table on which it rests as shown in the photograph), causing a small shaft to twist in response. This twisting motion is transferred to a lever which pulls on a tiny link chain wrapped around the pointer shaft, causing it to rotate and move the pointer needle around the gauge scale. Both the needle and scale on this gauge mechanism have been removed for easier viewing of diaphragm and mechanism.

Bourdon Tubes

Bourdon tubes are made of spring-like metal alloys bent into a circular shape. Under the influence of internal pressure, a bourdon tube “tries” to straighten out into its original shape before being bent at the time of manufacture.

Most pressure gauges use a bourdon tube as their pressure-sensing element. Most pressure transmitters use a diaphragm as their pressure-sensing element. Bourdon tubes may be made in spiral or helical forms for greater motion (and therefore greater gauge resolution).

Also See : Bourdon Tubes Working Animation

A typical C-shaped bourdon tube pressure gauge mechanism is shown in the following illustration:

C-shaped bourdon tube pressure gauge

A photograph of a C-tube pressure gauge mechanism (taken from the rear of the gauge, behind the pointer and scale) reveals its mechanical workings:

Pressure Gauge Internal Parts

The dark, C-shaped tube is the bourdon tube sensing element, while the shiny metal parts are the linkage, lever, and gear assembly.

Spiral Bourdon Tube

The next photograph shows a spiral bourdon tube, designed to produce a wider range of motion than a C-tube bourdon:

spiral bourdon tube

It should be noted that bellows, diaphragms, and bourdon tubes alike may all be used to measure differential and/or absolute pressure in addition to gauge pressure. All that is needed for these other functionalities is to subject the other side of each pressure-sensing element to either another applied pressure (in the case of differential measurement) or to a vacuum chamber (in the case of absolute pressure measurement).

Also see : Pressure Gauge Working Animation

Differential Pressure Sensors

This next set of illustrations shows how bellows, diaphragms, and bourdon tubes may be used as differential pressure-sensing elements:

differential pressure-sensing elements

The challenge in doing this, of course, is how to extract the mechanical motion of the pressure sensing element to an external mechanism (such as a pointer) while maintaining a good pressure seal. In gauge pressure mechanisms, this is no problem because one side of the pressure-sensing element must be exposed to atmospheric pressure anyway, and so that side is always available for mechanical connection.

A differential pressure gauge is shown in the next photograph. The two pressure ports are clearly evident on either side of the gauge:

Differential Pressure Gauge

 Credits : Tony R. Kuphaldt – Creative Commons Attribution 4.0 License

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Pressure Gauge Cocks
Pressure Transmitter Troubleshooting Tips
Pressure and Temperature Gauges
Bourdon Tube Pressure Gauge Working Principle Animation
What is Hammer Effect in Gauges ?
C-Bourdon Tube Pressure Gauge Theory
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

How to Measure Pressure in Inches of Water Column
What is LVDT ?
Pressure Gauge Calibration Procedure
Pressure Gauges Zero Adjustment
Pressure Gauge Calibration according to Standard DKD-R-6-1
Commissioning a Differential Pressure Transmitter in a Pressurized Boiler Steam Drum
Top 30 Interview Questions on Pressure Measuring Devices
McLeod Gauge Working Principle

Keep Learning

Asymmetric capillary for Level Measurement

Effects of Symmetric and Asymmetric Capillary Tube Pressure Measurement

pressure transmitter calibration setup

Questions on Pressure Transmitter Calibration Setup

Pressure gauge mechanism

How Measurement Span of Pressure Gauge Could be Changed?

Types of Pressure

Types of Pressure – Instrument Questions and Answers

Pressure Sensor Temperature Effects

Temperature Compensation for Pressure Measurement

What is a Bourdon tube

Bourdon Tube Pressure Gauge Advantages and Disadvantages

Pressure Transmitter Parts

Differential Pressure Transmitter Working Principle

Uncertainty Calculations of Pressure Calibration

Uncertainty Calculations of Pressure Calibration

Learn More

Valve Glossary

Valve Terminology Glossary

Power Systems Questions & Answers

Power Systems MCQ Series 14

Coriolis Flow Meter Inaccuracy

Coriolis Flow Meter Uncertainty and Inaccuracy

Temperature Measurement Multiple Choice Questions

Temperature Measurement Multiple Choice Questions

Hydraulic Motor Forward and Reverse Control with Simulation

Hydraulic Motor Forward and Reverse Control with Simulation

double-pumps unit unloading valves

What is an Unloading Valve? – Types, Principle

P&ID Guidelines for Centrifugal Compressor Systems

P&ID Guidelines for Centrifugal Compressor Systems

Transmission and Distribution Objective Questions and Answers

175+ Transmission and Distribution Objective Questions and Answers

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?