Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: HART Communication Tutorial Part 2
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Communication > HART Communication Tutorial Part 2

HART Communication Tutorial Part 2

Last updated: August 15, 2016 8:35 am
Editorial Staff
Communication
No Comments
Share
9 Min Read
SHARE

HART  ADDRESSING

HART addressing is of two types: polling address and unique identifier. Polling address is single byte and is also known as “short address.” Unique identifier is of 5 bytes and also called “long address.”

The address field formats for the short and the long frames are shown in Figure. One bit of the short address distinguishes the two masters, while another bit indicates burst mode telegrams. The remaining four bits distinguish the field devices (from 0 to 15)—0 for single-unit mode and 1–15 corresponds to multidrop mode. The polling address format is used with old HART devices that do not support the long address format.

The 5-byte unique identifier is a hardware address that consists of 1-byte manufacturer code, 1-byte device type code, and a 3-byte sequential number. This 5-byte ID is unique for each device. HCF administers the manufacturer code, which eliminates the possibility of address duplication of any two HART devices. The master uses this unique long address to communicate with the slaves.

HART Address Format

In single mode, the master polls address 0 to get the unique slave ID. In multidrop mode, the master checks all the polling addresses 0 to 15 to check device presence. The master then presents a list of live devices on the network. A user can alternatively enter the tag of the intended device and the master will broadcast the same.

The slave with the unique ID and the tag responds against this query from the master. The polling address, in conjunction with he unique ID, indicates whether the message exchange is from a primary or secondary master and whether the slave is in the burst mode or not.

ARBITRATION

Arbitration ensures proper message transmission between master and the slave devices. There can be either master–slave or burst mode. In the former, it is the master that initiates message transmissions, by requesting the slave device. The slave device, in turn, responds only to the query from the master. A slave in the master–slave mode of operation can never initiate communication.

There can be two masters on the network—a primary master and a secondary master—which may typically be a handheld terminal. Arbitration between the two masters is based on timing.

The slave burst mode, like the master–slave mode, is initiated by a command from the master. In this, burst mode responses are generated by the requested slave without request frames from the master. Data is updated at a faster rate since the slave goes on transmitting without a request from the master.

A frame, either from a master or a slave, is transmitted only after ensuring that no transmission is taking place on the network at that point of time. It is the responsibility of the timer to allow access to the network to the primary masters, secondary masters, slaves, or slaves in burst mode. Both masters have equal priority in getting access to the bus. In case both masters have to repetitively access the bus, they would do so alternately. Burst mode slaves wait longer than the masters to transmit, allowing the masters to control such slaves—either to continue or abort the burst mode.

COMMUNICATION MODES

Communication employing HART protocol can either be master–slave or burst mode. In the former mode, communication is initiated by the master. A HART communication loop may have two masters: primary and secondary. The master is typically a system host—may be a distributed control system, a PLC, or a personal computer. The secondary master can be a handheld configuration tool (i.e., a handheld terminal) used for occasional configurations of different process parameters.

A slave may be a transmitter or a valve positioner. Burst mode configuration provides the master with certain information on a continuous basis, until told to stop. It provides for a faster communication (about three to four data updates per second) than the master–slave mode and is used in single-slave configuration.

HART NETWORKS

HART networks can operate in two configurations: point-to-point and multidrop mode. In the point-to-point network, the traditional 4–20 mA current signal is used to control the process and remains unaffected by HART signal. The configuration parameters, etc., are transferred digitally over the HART protocol. The point-to-point scheme is shown in Below Figure. The digital HART signal is used for commissioning, maintenance, and diagnostic purposes.

HART Point to Point Network

HART multidrop communication networks are used when the devices are widely spaced. As shown in Below Figure, only two wires are required to communicate with the master. If required, intrinsic safety barriers and auxiliary power supply for up to 15 devices can be incorporated in this mode. All polling addresses of the devices are set at greater than zero and device current limited to a typical value of 4 mA.

HART Multidrop Network

Multidrop networks allow two wire devices to be connected in parallel. Information reading time from a single variable is typically 500 ms and with 15 devices connected to the network; approximately 7.5 s would be required to completely go through the network cycle once.

 HART  FIELD DEVICE CALIBRATION

HART devices need occasional calibration to ensure that the transducer output, via the different processing blocks, is representing the true process value. Any HART field device has a transducer block, a range block, and a data acquisition (DAQ) block for such calibration.

Calibration of such field devices include the calibration of the digital process value, its proper scaling, converting into some desired range, and finally sending the 4–20 mA current value. The process output successively goes to the transducer block, range or range conversion block, and finally to the DAQ block.

The below Figure shows the calibration steps for a HART-enabled field device. The transducer block involves comparing a simulated transducer value with an internally generated traceable reference. This comparison determines whether calibration of the field device is required, which can be done by using the HART protocol. Calibration is usually performed by providing the field device with exact transducer values—one near the lower limit and the other near the upper limit. Using the HART protocol, the field device then performs the necessary adjustments, if needed.

Calibration of HART field devices

Fig : Calibration of HART field devices

The range block uses the lower and upper range values of 4 and 20 mA, respectively, to convert these transducer values into lower and upper range percent values—the former refers to 0% and the latter 100%. The range block output may be in linear or square root form—as in the case of flowtype PV.

The output of the range block is passed on to the DAQ block, which then converts the percent range values into loop current signals. Calibration of the current loop is not seriously needed because no moving parts are involved. Calibration at 4 mA corresponds to current zero trim and 20 mA is called the current span trim.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Difference Between Ethernet IP and EtherCAT
Introduction to Fieldbus Function Blocks
Foundation Fieldbus Standard Function Blocks
What is a Fieldbus Terminator and How Does it Work?
What is IPSec? – Internet Protocol Security
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Difference between Router, Switch, and Hub

Difference between Router, Switch, and Hub

Optical Fiber Size

Fiber Optic Cable Connectors, Routing, and Safety

Distributed Network Protocol Communication

DNP3 Communication Protocol Overview

Types of Can Open network topologies

CANOpen Network Topology

HART Layers vs OSI Layers

HART Communication Tutorial Part 3

Patch Panel

What is a Patch Panel? Types and Uses in Networking

Fieldbus Transmitter Calibration

Fieldbus Transmitters Calibration and Ranging

DHCP

Difference Between BOOTP and DHCP

More Articles

4-20mA to Process Variable conversion

Formula to Calculate Process Variable from 4-20mA

Carbon Monoxide Gas Hazards

Carbon Monoxide Gas Hazards

Thermocouple Types

Types of Thermocouples

Electrical Machines Questions and Answers

Synchronous Machines Power Factor Control Questions

Shunt-Wound DC Generator Principle

Shunt-Wound DC Generators

Difference between SIS, PLC and BPCS Systems

Difference between SIS, PLC and BPCS Systems

What is a Mimic Panel

What is a Mimic Panel ?

direct and reverse acting PID controller Tuning

Recognizing an Over-Tuned PID Controller by Phase Shift

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?