Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Transformer Energy Losses & Efficiency
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electrical Machines > Transformer Energy Losses & Efficiency

Transformer Energy Losses & Efficiency

Last updated: March 9, 2016 2:03 pm
Editorial Staff
Electrical Machines
No Comments
Share
3 Min Read
SHARE

Transformers reduce the voltage of the electricity supplied by the utility to a level suitable for use by the electric equipment. Since all of the electricity used by a company passes through a transformer, even a small efficiency improvement will result in significant electricity savings. High-efficiency transformers are now available that can reduce total electricity use by approximately 1 percent. Reduced electricity use provides cost savings for a company.

Two types of energy losses occur in transformers: load and no-load losses.

Load losses: result from resistance in the copper or aluminum windings. Load losses (also called winding losses) vary with the square of the electrical current (or load) flowing through the windings. At low loads (e.g. under 30 percent loading), core losses account for the majority of losses, but as the load increases, winding losses quickly dominate and account for 50 to 90 percent of transformer losses at full load. Winding losses can be reduced through improved conductor design, including proper materials selection and increases in the amount of copper conductor employed.

No-load losses: result from resistance in the transformer’s laminated steel core. These losses (also called core losses) occur whenever a transformer is energized and remain essentially constant regardless of how much electric power is flowing through it. To reduce core losses, high-efficiency transformers are designed with a better grade of core steel and with thinner core laminations than standard-efficiency models.

Total transformer losses are a combination of the core and winding losses. Unfortunately, some efforts to reduce winding losses increase core losses and vice versa. For example, increasing the amount of conductor used reduces the winding losses, but it may necessitate using a larger core, which would increase core losses. Manufacturers are developing techniques that optimize these losses based on the expected loading.

Annual energy losses and cost of these losses:

The annual energy losses of a transformer can be estimated from the following formula

Wloss = 8760(Po+Pk L2)

Where,

Wloss – is the annual energy loss in kWh.

Po – is the no-load loss in kW.

Pk – is the short-circuit loss (or load loss) in kW.

L – is the average per-unit load on the transformer.

8760 – is the number of hours in a year.

To calculate the cost of these losses, they need to be converted to the moment of purchase by assigning capital values, to be able to put them into the same perspective as the purchase price. This is called the Total Capitalized Cost of the losses, TCC loss. This can be calculated using the following formula

Transformer Losses

Where,

C – is the estimated average cost per kWh in each year.

i – is the estimated interest rate.

n – is the expected life time of the transformer.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
What happen When Synchronous Generator loss Excitation
Basics of AC Induction Motors
Difference between Star and Delta Connections
Squirrel Cage Induction Motor vs Slip Ring Induction Motor
Stepper Motor Basics, Types, Modes, Wiring, Questions
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Synchronous Motor Is Not Self Starting?

Advantages of Hydrogen cooling in Synchronous Generators

Difference Between Squirrel Cage and Slip Ring Motors

6.6kV HV Induction motor Protection

Advantages and Disadvantages of Slip Ring Induction Motor

Importance of Hysteresis Loop

Off load Tap Changer Principle

Transformer Tap Changing Working Principle

Classification of valves

Losses in a DC Generator

More Articles

RJ45 Connector Pins

How to make RJ45 cable

Ozone analyzer principle

Ozone Analyzer Working Principle

What is Photoionization Detector (PID)

What is Photoionization Detector (PID)?

Pneumatic Transmitter

Questions on Pneumatic Transmitter and Repeater

Digital Electronics Multiple Choice Questions

Asynchronous Down Counter Objective Questions

Optimal Control Systems

Parameter Optimization : Servomechanims

Door Lock with Delay PLC Exercise Problems

Door Lock with Delay PLC Exercise Problems

Thermal Mass Flowmeter Principle

Thermal Mass Flow Meter – Principle, Advantages, Applications

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?