Inst ToolsInst ToolsInst Tools
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Cathode Ray Tube Deflection System
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Ask
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > Cathode Ray Tube Deflection System

Cathode Ray Tube Deflection System

Last updated: April 1, 2018 8:32 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
4 Min Read
SHARE

This Post Deflection system of CRT is a continuation of my previous post Electron Gun of CRT. This post completely covers the Deflection system of the CRT. When the electron beam is accelerated it passes through the deflection system, with which beam can be positioned anywhere on the screen.

The deflection system of the cathode-ray-tube consists of two pairs of parallel plates, referred to as the vertical and horizontal deflection plates. One of the plates in each set is connected to ground (0 V). to the other plate of each set, the external deflection voltage is applied through an internal adjustable gain amplifier stage. To apply the deflection voltage externally, an external terminal, called the y input or the x input, is available.

As shown in the image below, the electron beam passes through these plates. A positive voltage applied to the y input terminal (V y) causes the beam to deflect vertically upward due to the attraction forces, while a negative voltage applied to the y-input terminal will cause the electron beam to deflect vertically downward, due to the repulsion forces.

Similarly, a positive voltage applied to X-input terminal(V x) will cause the electron beam to deflect horizontally towards the right; while a negative voltage applied to the X-input terminal will cause the electron beam to deflect horizontally towards the left of the screen. The amount of vertical or horizontal deflection is directly proportional to the corresponding applied voltage.

When the voltages are applied simultaneously to vertical and horizontal deflecting plates, the electron beam is deflected due to the resultant of these two voltages.

The face of the screen can be considered as an X-Y plane. The (X,Y) position of the beam spot is thus directly influenced by the horizontal and the vertical voltages applied to the deflection plates Vx and Vy respectively.

The horizontal deflection (X) produced will be proportional to the horizontal deflecting voltage, Vx, applied to X-input.

X = KxVx

Where, Kx is constant of proportionality.

The deflection produced is usually measured in cm or as number of division , on the scale, in the horizontal direction.

Then Kx = x/Vx where Kx expressed as cm/volt or division/volt, is called horizontal sensitivity of the oscilloscope.

Similarly, the vertical deflection (y) produced will be proportional to the vertical deflecting voltage, Vy, applied to the y-input.
Y= KyVy

Ky=y/Vy and Ky, the vertical sensitivity, will be expressed as cm/volt, or division/volt.

The schematic arrangement of the vertical and the horizontal plates controlling the position of the spot on the screen is shown in the figure.

Cathode Ray Tube Deflection System

The values of vertical and horizontal sensitivities are selectable and adjustable through multi positional switches on the front panel that controls the gain of the corresponding internal amplifier stage. The bright spot of the electron beam can thus trace (or plot) the X-Y relationship between the two voltages, Vx and Vy.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !
Voltage Divider Rule
Band Gap for Semiconductor Materials
What is Kirchhoff’s Voltage Law
Light Emitting Diode Operation
Semiconductors Diodes Questions & Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • MIHARITSOA Aina Sitraka on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Diode-testing-with-multimeter

How to Test a Diode using Multimeter

Derivation-of-Ohms-Law

Basics of Ohm’s Law

working-of-pnp-transistor

Working of NPN Transistor

Power MOSFET Safe Operating Area

Power MOSFET Safe Operating Area

Schottky Diode Vs PN junction Diode

Difference between Schottky Diode and PN junction Diode

Transistor Load Line Analysis

Transistor Load Line Analysis

Zener Diode Voltage Regulator Operation

Zener Diode Voltage Regulator Operation

Zener Diode Limiter Working

Zener Diode Limiter

More Articles

Routine Tests of Transformers

Transformer Testing – Routine Tests of Transformers

Gas Detection Excel Converters

Safety PLC System

SIS Maintenance – Safety Instrumented System

PLC Pump Control

PLC Pump Control: 10 seconds ON & 20 seconds OFF

Industrial Instruments Questions and Answers

Industrial Instruments Questions and Answers

Electron Spin Resonance Questions & Answers

Basic ESR Spectrometer

Example of Automated Guided Vehicle with PLC

Example of Automated Guided Vehicle with PLC

PLC Program for Washing Machine

PLC Program for Washing Machine

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?