Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Infrared Gas Detectors Working Principle
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Fire & Gas System > Infrared Gas Detectors Working Principle

Infrared Gas Detectors Working Principle

Last updated: November 7, 2018 5:28 pm
Editorial Staff
Fire & Gas System
No Comments
Share
3 Min Read
SHARE

The Infrared (IR) detection method is based upon the absorption of infrared radiation at specific wavelengths as it passes through a volume of gas. Typically two infrared light sources and an infrared light detector measures the intensity of two different wavelengths, one at the absorption wavelength and one outside the absorption wavelength. If a gas intervenes between the source and the detector, the level of radiation falling on the detector is reduced. Gas concentration is determined by comparing the relative values between the two wavelengths. This is a dual beam infrared detector.

 Infrared Gas Detectors Working Principle

Infrared gas detection is based upon the ability of some gases to absorb IR radiation. Many hydrocarbons absorb IR at approximately 3.4 micrometers and in this region H2O and CO2 are relatively transparent. As mentioned earlier, there are some hydrocarbons and other flammable gases that have poor or no response on a general purpose IR sensor. In addition to aromatics and acetylene, hydrogen, ammonia and carbon monoxide also cannot be detected using IR technology with general purpose sensors of 3.4 micron specifications.

Advantages

The major advantages of IR gas detectors:

  • Immunity to contamination and poisoning.
  • Consumables (source and detector) tend to outlast catalytic sensors.
  • Can be calibrated less often than a catalytic detector.
  • Ability to operate in the absence of oxygen or in enriched oxygen.
  • Ability to operate in continuous presence of gas.
  • Can perform more reliably in varying flow conditions.
  • Even when flooded with gas, will continue to show high reading and sensor will not be damaged.
  • Able to detect at levels above 100 % LEL.

Disadvantages

The limiting factors in IR technology:

  • The initial higher cost per point. IR detectors typically are more expensive than catalytic detectors at initial purchase.
  • Higher spare parts cost.
  • Gases that do not absorb IR energy (such as hydrogen) are not detectable.
  • High humidity, dusty and/or corrosive field environments can increase IR detector maintenance costs.
  • Temperature range for detector use is limited compared to catalytic detectors.
  • May not perform well where multiple gases are present.
Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Ultrasonic Gas Leak Detectors (UGLD)
Basics of Fire Fighting Hydrant Systems
Safety Gas Analyzers
Rate Compensated Heat Detectors Working Principle
Interview Questions on Smoke Detection System
Gas Detection System Abbreviations
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Fire Water Spray Systems Principle
Heat Detector Testing Procedure
Flame Detector Testing Procedure
Deluge System for Transformer Protection Animation
Factors for Setting Alarm Levels on Toxic Gas Detectors
Fire and Gas System Interview Questions & Answers
Rate of Rise Thermal Detectors Working Principle
How to identify location of Fire Detectors

Keep Learning

Addressable Fire Alarm System

Which One is Best – Conventional or Addressable Fire Alarm System?

Gas Suppression System

What is Gas Suppression Systems ?

Why Fire and Gas Detectors are 3-Wire types instead of 2 Wire

Why Fire and Gas Detectors are 3-Wire types instead of 2 Wire?

What is a Fusible Loop System

What is a Fusible Plug? – Working, Advantages, Disadvantages

Quartzoid Bulb Detector Working Principle

Fire Water Sprinklers Working Principle

Portable Gas Detectors Calibration Procedure

Portable Gas Detectors Calibration Procedure

Fire and Gas Systems Loop Checks

Fire and Gas System Loop Checks Procedure

Gas-to-air-mixture

Basics of Gas Monitoring

Learn More

Compare DCS, PLC, RTU

Difference between DCS, PLC, and RTU ?

HVAC Principle and Theory

Recommendations to HVAC Engineers

Reverse Bias Diode Working Animation

Forward Bias & Reverse Bias Diode Working Animation

Motor Controls

Design and Implement Motor Control – Electrical Engineering

Difference between Permanent Magnet BLDC and DC Motor

Absorption chiller

Capacity Control of Absorption Chillers

Robot and Robotics

Robot and Robotics – Laws, Components, Types, Advantages

Pressure Gauge with Syphons

Pressure Gauge Syphons Principle

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?