Inst ToolsInst ToolsInst Tools
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Search
  • Books
  • Software
  • Projects
  • Process
  • Tools
  • Basics
  • Formula
  • Power Plant
  • Root Cause Analysis
  • Electrical Basics
  • Animation
  • Standards
  • 4-20 mA Course
  • Siemens PLC Course
Reading: Operational Amplifiers Questions & Answers
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • Design
  • PLC
  • Interview
  • Control System
Search
  • Courses
  • Automation
    • PLC
    • Control System
    • Safety System
    • Communication
    • Fire & Gas System
  • Instrumentation
    • Design
    • Pressure
    • Temperature
    • Flow
    • Level
    • Vibration
    • Analyzer
    • Control Valve
    • Switch
    • Calibration
    • Erection & Commissioning
  • Interview
    • Instrumentation
    • Electrical
    • Electronics
    • Practical
  • Q&A
    • Instrumentation
    • Control System
    • Electrical
    • Electronics
    • Analog Electronics
    • Digital Electronics
    • Power Electronics
    • Microprocessor
  • Request
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronics Q & A > Operational Amplifiers Questions & Answers

Operational Amplifiers Questions & Answers

Last updated: September 11, 2016 4:19 am
Editorial Staff
Electronics Q & A
No Comments
Share
6 Min Read
SHARE

1. Explain what is an operational amplifier?

An operational amplifier, abbreviated as op-amp, is basically a multi-stage, very high gain, direct-coupled, negative feedback amplifier that uses voltage shunt feedback to provide a stabilized voltage gain.

2. State assumptions made for analyzing ideal op-amp.

Assumptions made for analyzing ideal op-amp are :

  • Infinite open-loop gain
  • Infinite input impedance
  • Zero output impedance
  • Perfect balance
  • Infinite frqeuency bandwidth
  • Infinite slew rate
  • Infinite common-mode rejection ratio
  • Nil drift of characteristics with temperature

3. Explain what is a voltage transfer curve of an op-amp?

The curve drawn between output voltage and input differential voltage, for an op-amp, keeping voltage gain A constant is known as voltage transfer curve.

4. Explain what are differential gain and common-mode gain of a differential amplifier?

When the difference of the two inputs applied to the two terminals of a differential amplifier is amplified, the resultant gain is termed as differential gain. But when the two input terminals are connected to the same input source then the gain established by the differential amplifier is called the common mode gain.

5. Define CMRR.

CMRR is defined as the ration of differential voltage gain to common-mode voltage gain and it is given as CMRR = Ad/Acm

6. Explain why does an op-amp have high CMRR?

High CMRR ensures that the common mode signals such as noise are rejected successfully and the output voltage is proportional only to the differential input voltage.

7. Explain why open-loop op-amp configurations are not used in linear applications?

When an op-amp is operated in the open-loop configuration, the output either goes to positive saturation or negative saturation levels or switches between positive and negative saturation levels and thus clips the output above these levels. So open-loop op-amp configurations are not used in linear applications.

8. List the parameters that should be considered for ac and dc applications.

The parameters to be considered for dc applications are:

  • Input offset voltage
  • Input offset current
  • Input bias current
  • Drift

The parameters to be considered for ac applications are:

  • Gain bandwidth product (GBW)
  • Rise time
  • Slew rate
  • Full-power response
  • AC noise

9. Define offset voltage as applied to an op-amp.

Input offset voltage may be defined as that voltage which is to be applied between the input terminals to balance the amplifier.

10. Give the typical value of bias current for CA741 operational amplifier.

80nA

11. Define slew rate.

Slew rate of an op-amp is defined as the maximum rate of change of output voltage per unit time and is expresses in V/µs.

12. Explain what kind of negative feedback is present in a noninverting op-amp.

Negative voltage-series feedback.

13. Explain what is a voltage follower?

Voltage follower is an electronic circuit in which output voltage tracts the input voltage both in sign and magnitude.

14. Explain what are the advantages of using a voltage follower amplifier?

Voltage follower has three unique characteristics viz. extremely high input impedance, extremely low output impedance and unity transmission gain and is , therefore, an ideal circuit device for use as a buffer amplifier.

15. In Explain what way is the voltage follower a special case of the non-inverting amplifier?

If feedback resistor is made zero or R1 is made ∞(by keeping it open-circuited) in a noninverting amplifier circuit, voltage follower is obtained.

16. Explain what is an inverting amplifier?

In an inverting amplifier, the input is connected to the minus or inverting terminal of op-amp.

17. Explain what are the applications of an inverting amplifier?

Inverting amplifier is a very versatile component and can be used for performing number of mathematical stimulation such as analog inverter, paraphrase amplifier, phase shifter, adder, integrator, differentiator.

18. Explain what is a differential amplifier?

Differential amplifier is a combination of inverting and noninverting amplifiers and amplifies the voltage difference between input lines neither of which is grounded.

19. Give examples of linear circuits.

Adder, subtractor, differentiator, integrator fall under the category of linear circuits.

20. Explain what is an adder or summing amplifier?

Adder or summing amplifier is a circuit that provides an output voltage proportional to or equal to the algebraic sum of two or more input voltages multiplied by a constant gain factor.

21. Explain what is an integrator?

An integrator is a circuit that performs a mathematical operation called integration.

22. Explain what are the applications of integrators?

Integrators are widely used in ramp or sweep generators, filters, analog computers etc.

23. Op-amp is used mostly as an integrator than a differentiator. Explain why?

Op-amp is used mostly as an integrator than a differentiator because in differentiator at high frequency, gain is high and so high-frequency noise is also amplified which absolutely abstract the differentiated signal.

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Continue Reading

Electronics Questions & Answers
Bipolar Junction Transistors Questions & Answers
Special Purpose Diodes Interview Questions & Answers
Basic Electronics Questions & Answers
Number Systems Questions & Answers
BJT Amplifiers Interview Questions & Answers
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
210kSubscribersSubscribe
38kFollowersFollow

Categories

Explore More

Diodes Questions & Answers
Electronic Meters Questions & Answers
Logic Gates Questions and Answers
Cathode Ray Oscilloscope Questions & Answers
Semiconductors Diodes Questions & Answers
Rectifiers & Filters Interview Questions
Basics of Amplifiers Interview Questions
PN Junction Questions & Answers

Keep Learning

Basics of Amplifiers Interview Questions

Amplifiers Questions & Answers

Transistors Questions & Answers

Transistors Questions & Answers

Learn More

Microprocessors Objective Questions

Microprocessors Objective Questions – Set 2

Types of Scan Time in a PLC

Programmable Logic Controller (PLC) Scan Time – Types, Theory

Programmable Logic Controller (PLC) Questions and Answers

Programmable Logic Controller (PLC) Questions and Answers – 2

Field Transmitter Range Calculation

Transmitter Turndown Ratio, Set Span and Zero Span

What is VLAN?

Difference Between Subnet and VLAN

Troubleshooting Fluid Systems Pressure Changes

Troubleshooting Fluid Systems Pressure Changes

Do’s and Don'ts in PLC

#18 PLC Best Practices – Store PLC Hard Stop Events from Faults

Pressure Gauge Installation

Pressure Gauge Installation at Pump Discharge

Menu

  • About
  • Privacy Policy
  • Copyright

Quick Links

  • Learn PLC
  • Helping Hand
  • Part Time Job

YouTube Subscribe

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?