Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: Pressure Unit Conversion Practical Example
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Pressure Measurement > Pressure Unit Conversion Practical Example

Pressure Unit Conversion Practical Example

Last updated: May 21, 2020 5:03 pm
Editorial Staff
Pressure Measurement
No Comments
Share
3 Min Read
SHARE

Water pressure available at a fire hydrant is 80 PSI. If a fire hose is connected to the hydrant and the hydrant valve opened, how high can the end of the hose be raised and still have water flow out the end?

Contents
Answer:Read Next:

Pressure Unit Conversion Example

Now, suppose that a spray nozzle attached to the end of the hose requires at least 30 PSI of pressure at the coupling in order to create a proper spray of water. How high can the hose be raised then, and still have enough water pressure at the nozzle to allow for the fighting of a fire?

Pressure Unit Conversion Practical Example

Answer:

With no nozzle on the end of the hose, the end may be raised a maximum of 184.54 feet. With a nozzle in place, the hose end may be raised only 115.33 feet. Essentially, this is just another pressure unit conversion problem: in this case, PSI-to-feet of water column. 80 PSI is equivalent to 184.54 feet, so that is how high 80 PSI can force a column of water.

With a nozzle attached to the end of the hose, though, we are only allowed to “drop” 50 feet of hydrostatic pressure, in order to leave 30 PSI remaining at the nozzle coupling for proper operation. 50 PSI is equivalent to 115.33 feet, so this is how high we may raise the hose end with a nozzle on it.

It must be understood that the first calculation is not a very practical one. 80 PSI of pressure at the hydrant will just push water 184.54 feet high. If the hose were 190 feet and poised vertically, there would be a column of water inside 184.54 feet tall, with no water at all coming out the end. If the hose end were brought exactly to a height of 184.54 feet, water would be right at the lip of the hose, not even trickling out. Obviously, some pressure is needed at the hose end in order to push water out onto a fire, so the practical, no-hose height for 80 PSI will be somewhat lower than 184.54 feet.

The hose-with-nozzle scenario is more realistic, because an actual figure for minimum hose-end pressure is given for us to incorporate into our calculations.

Read Next:

  • Instrument Percent of Span Error
  • Analog and Digital Signals
  • Pneumatic Control Loop
  • Float & Dial Level Gauge
  • Pressure Transmitter Circuit

Credits: Tony R. Kuphaldt

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

Bellows
Top 30 Interview Questions on Pressure Measuring Devices
Components of Bourdon Tube – Questions and Answers
5 Valve Manifold Operation
Remote Diaphragm Seal Transmitter for Vacuum Application
Pressure Gauge Syphons Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Comparison of Pressure Instruments - Industrial Instrumentation

Comparison of Pressure Instruments – Industrial Instrumentation

Troubleshooting Fluid Systems Pressure Changes

Troubleshooting Fluid Systems Pressure Changes

pressure gauge snubber

Pressure Gauge Snubbers

Pressure Gauge Calibration according to Standard DKD-R-6-1

Pressure Gauge Calibration according to Standard DKD-R-6-1

Asymmetric capillary for Level Measurement

Effects of Symmetric and Asymmetric Capillary Tube Pressure Measurement

C-Type Bourdon Tube

Types of Bourdon Tube

diaphragm-pressure-gauge

Diaphragm Pressure Sensors

Pressure Gauge Selection

Pressure Gauge Selection

More Articles

Pipeline Inspection Tools

Essential Industrial Pipeline Inspection Tools

Fasteners and General Corrosion of Electrical Motors

Fasteners and General Corrosion of Electrical Motors

Loss in Weight Liquid PLC System

Dosing Pump PLC Logic

Grounding Electronic Equipment

Importance of Grounding Electronic Equipment

power factor correction equipment

Power Factor Controller (PFC) – Commissioning

Thermocouple Types

Types of Thermocouples

PLC control 4 machines with 1 button

CX-Programmer Tutorial: 1 Button To Activate 4 Different Machines

Siemens PLC Organization Blocks used For Troubleshooting

Tia Portal – OB121 Programming Errors Interrupt Organization Block

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?