Inst ToolsInst ToolsInst Tools
  • Courses
  • Videos
  • Q & A
    • Interview
      • Instrumentation
      • Electronics
      • Electrical
      • Practical Questions
    • MCQ
      • Instrumentation MCQ
      • Electrical MCQ
      • Electronics MCQ
      • Control Systems MCQ
      • Analog Electronics MCQ
      • Digital Electronics MCQ
      • Power Electronics MCQ
      • Microprocessor MCQ
      • Multiple Choice Questions
  • EE
    • Electronics
      • Electronics Q & A
      • Electronic Basics
      • Electronic Devices & Circuits
      • Electronics Animation
      • Digital Electronics
    • Electrical
      • Electrical Basics
      • Electrical Q & A
      • Power Electronics
      • Electrical Machines
      • Electrical Animation
      • Power Systems
      • Switchgear & Protection
      • Transmission & Distribution
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Search
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Reading: What is Kirchhoff’s Current Law
Share
Notification Show More
Font ResizerAa
Inst ToolsInst Tools
Font ResizerAa
  • Courses
  • PLC Tutorials
  • Control Systems
Search
  • Courses
  • Videos
  • Q & A
    • Interview
    • MCQ
  • EE
    • Electronics
    • Electrical
  • Measure
    • Control Valves
    • Calibration
    • Temperature
    • Pressure
    • Flow
    • Level
    • Analyzers
    • Switches
    • Vibration
    • Solenoid Valve
  • Control
    • PLC Tutorials
    • Control Systems
    • Safety Instrumented System (SIS)
    • Communication
    • Fire & Gas System
  • More
    • Design
    • Tools
    • Animation
    • Basics
    • Formulas
    • Standards
    • TextBooks
    • Common
    • Software
    • Excel Tools
    • Erection & Commissioning
    • Process Fundamentals
    • Videos
    • Books
Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Inst Tools > Blog > Electronic Devices & Circuits > What is Kirchhoff’s Current Law

What is Kirchhoff’s Current Law

Last updated: October 6, 2016 7:09 am
Editorial Staff
Electronic Devices & Circuits
No Comments
Share
4 Min Read
SHARE

A connection of two or more elements is called a node. An example of a node is depicted in the partial circuit shown below:

Kirchhoff’s-Current-Law

Even if the figure is redrawn to make it appear that there may be more than one node, as in the figure below, the connection of the six elements actually constitutes only one node.

Kirchhoff’s-Current-Law-Circuit

Kirchhoff’s  Current  Law  (KCL)  is  essentially  the  law  of  conservation  of electric charge. If currents directed out of a node are positive in sense, and currents directed into a node are negative in sense (or vice versa), then KCL can be stated as follows:

KCL defined

KCL: At any node of a circuit, the currents algebraically sum to zero.

If there are n elements attached to a node then, in symbols, KCL is:

KCL-Equation

KCL can also be stated as: The sum of the currents entering a node is equal to the sum of the currents leaving a node.

Now we will discuss about KCL law with practical examples below:

Example 1

As an example of KCL, consider a portion of some circuit, shown below:

example-of-KCL

Choosing the positive sense to be leaving, we apply KCL at the node and obtain the equation:

– i1 + i2  + i3  – i4  + i5  – i6  = 0

Note that even if one of the elements – the one which carries i3– is a short circuit, KCL holds. In other words, KCL applies regardless of the nature of the elements in the circuit.

Example 2

We want to find the voltage v, in the two-node circuit shown below:

KCL-Example-the-two-node-circuit

The directions of i1 , i2 , i3 and the polarity of v were chosen arbitrarily (the directions of the 13 A and 2 A sources are given). By KCL (at either of the two nodes), we have:

– 13 + i1 – i2  + 2 + i3  = 0

From this we can write:

i1 – i2  + i3  = 11

By Ohm’s Law:

KCL-Formula-1

Substituting these into the previous equation yields:

KCL-Formula-2

Having solved for v, we can now find that:

KCL-Formula-3

Just as KCL applies to any node of a circuit, so must KCL hold for any closed region, i.e. to satisfy the physical law of conservation of charge, the total current leaving (or entering) a region must be zero.

Example 3

In the circuit shown below, three regions have been identified:

kirchhoffs-current-law-example-circuit

Applying KCL to Region 1, we get:

i = 0

For Region 2:

i1 + i3  + i4  = i2

For Region 3:

i2  + i5  = i4

You may now ask, “Since there is no current from point a to point b (or vice versa) why is the connection (a short-circuit) between the points there?” If the connection between the two points is removed, two separate circuits result. The voltages and currents within each individual circuit remain the same as before. Having the connection present constrains points a and b to be the same node, and  hence  be  at  the  same  voltage.  It  also  indicates  that  the  two  separate portions are physically connected (even though there is no current between them).

Don't Miss Our Updates
Be the first to get exclusive content straight to your email.
We promise not to spam you. You can unsubscribe at any time.
Invalid email address
You've successfully subscribed !

Recommended Articles

Series and Parallel Resistors
Bipolar Junction Transistor Construction
Capacitor Filter Working Principle
Light Emitting Diode Operation
Methods of Transistor Biasing
Optocouplers Working Principle
Share This Article
Facebook Whatsapp Whatsapp LinkedIn Copy Link
Share
Leave a Comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Stay Connected

128.3kFollowersLike
69.1kFollowersFollow
208kSubscribersSubscribe
38kFollowersFollow

Categories

Recent Comments

  • William Snyder on Top Non-PLC Certification Courses for Automation Professionals
  • Kamli on Top Free PLC Software
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals
  • Guifty Shimica on Top Non-PLC Certification Courses for Automation Professionals

Related Articles

Classification of Bridge Circuits

Classification of Bridge Circuits

MOSFET VI Characteristics

Power MOSFET

Center Tapped Full Wave Rectifier Operation

Center Tapped Full Wave Rectifier Operation

transistor-biasing-circuits

Summary Of Transistor Bias Circuits

Laser Diode Working Principle

Laser Diode Working Principle

p-type-semiconductor

N Type and P Type Semiconductors

Zener Diode Voltage Regulator Operation

Zener Diode Voltage Regulator Operation

Schottky Diode Vs PN junction Diode

Difference between Schottky Diode and PN junction Diode

More Articles

Allen Bradley PLC to PLC Communication in Studio 5000

Allen Bradley PLC to PLC Communication in Studio 5000

Capacitor Bank

Poor Power Factor Boosted – Industrial Electrical Problems

Electronics & Instrumentation Engineering Interview Questions For Freshers

Electronics & Instrumentation Engineering Interview Questions For Freshers

How-to do Security of SCADA Systems

How-to do Security of SCADA Systems?

Microprocessors Objective Questions

Microprocessors Objective Questions – Set 7

Air Lock Relay Working Principle

Control Valve Air Lock Relay Working Principle

3-way solenoid valves control instrument air pressure

Solenoid Valve’s Energized or De-energized State ?

Inherent vs Installed Control Valve Flow Characteristics

Inherent vs Installed Control Valve Flow Characteristics

Follow US
All rights reserved. Reproduction in whole or in part without written permission is prohibited.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?