Series and Parallel Inductors

Series Inductances

When inductors are connected in series, the total inductance is the sum of the individual inductors’ inductances.

To understand why this is so, consider the following: the definitive measure of inductance is the amount of voltage dropped across an inductor for a given rate of current change through it.

If inductors are connected together in series (thus sharing the same current, and seeing the same rate of change in current), then the total voltage dropped as the result of a change in current will be additive with each inductor, creating a greater total voltage than either of the individual inductors alone.

Greater voltage for the same rate of change in current means greater inductance.

Series Inductances

Thus, the total inductance for series inductors is more than any one of the individual inductors’ inductances.

Formula

The formula for calculating the series total inductance is the same form as for calculating series resistances:

Ltotal = L1 + L2 + . . . Ln

Parallel Inductances

When inductors are connected in parallel, the total inductance is less than any one of the parallel inductors’ inductances.

Again, remember that the definitive measure of inductance is the amount of voltage dropped across an inductor for a given rate of current change through it.

Since the current through each parallel inductor will be a fraction of the total current, and the voltage across each parallel inductor will be equal, a change in total current will result in less voltage dropped across the parallel array than for any one of the inductors considered separately.

In other words, there will be less voltage dropped across parallel inductors for a given rate of change in current than for any of those inductors considered separately, because total current divides among parallel branches. Less voltage for the same rate of change in current means less inductance.

Thus, the total inductance is less than any one of the individual inductors’ inductances.

The formula for calculating the parallel total inductance is the same form as for calculating parallel resistances:

Formula

Review

  • Inductances add in series.
  • Inductances diminish in parallel
You've successfully subscribed !
Share

Recent Articles

Introduction to AC Motors

Initially, AC motors were constructed like DC motors. Numerous problems were encountered due to changing…

4 years ago

AC Instrumentation Transducers

Learn about the AC Instrumentation Transducers like Potentiometer, LVDT, RVDT, Synchro, and Capacitive Transducers.

4 years ago

AC Bridge Circuits

AC bridge circuit unknown impedance is balanced by a standard impedance of similar type on…

4 years ago

Power Quality Measurement

Power Quality is the general term given to represent an AC power system freedom from harmonic…

4 years ago

Power Measurement

Hall effect - Voltage is proportional to current and strength of the perpendicular magnetic field.…

4 years ago

Frequency and Phase Measurement

Learn about the Frequency and Phase Measurement from our free online electronics and electrical engineering…

4 years ago