k& PLC_GX_Works2_Advanced ENG

g MITSUBISHI
ELECTRIC

Changes for the Better

PLC
GX Works2 Advanced

This course provides knowledge of the functions
to improve the development environment of the
design site having problems about "productivity,”
"quality,” "project management,” and "security
measures." The course is intended for sequence
programmers who already use MELSOFT GX
Works2.

Copyright 22014 Mitsubishi Electric Corporation. All Rights Reserved L{INA)DOL15ENG

'
W PLC_GX_Works2_Advanced_ENG = =

)]
LIELIEEL Purpose of the Course p

This course provides knowledge of the functions to improve the development environment of the design site

having problems about "productivity,”" "quality," "project management,”" and "security measures." The course
is intended for sequence programmers who already use MELSOFT GX Warks2.

'
W PLC_GX_Works2_Advanced_ENG

)]

LGLITESIGLY Course Structure

The contents of this course are as follows.
We recommend that you start from Chapter 1.

Chapter 1 - Improving Development Environment Using GX Works2

You will learn the problems facing the design site and the development environment required for solving
them.

Chapter 2 - Programming

You will learn the functions used for programming.
Chapter 3 - Debugging

You will learn the functions used for debugging.

Chapter 4 - Project Management and Security Measures

You will learn the functions for project management and security measures at the stage of development
and maintenance after the start of system operation.

Final Test

Passing grade: 60% and higher

'
W PLC_GX_Works2_Advanced_ENG

)]

UGG How to Use This e-Learning Tool

Go to the next page

Back to the previous page

Move to the desired page

Exit the leaming

Go to the next page.

Back to the previous page.

“Table of Contents” will be displayed, enabling you to navigate to
the desired page.

Exit the learning.
Window such as "Contents" screen and the learning will be closed.

' =
ki 1-GX_Works2_Advanced_na00115_sng-A w

>m Cautions for Use)

Safety precautions

When you learn by using actual products, please carefully read the safety precautions in the corresponding manuals.

Precautions in this course

- The displayed screens of the software version that you use may differ from those in this course.

'
I PLC_GX_Works2 Advanced ENG =

[Chapter 1 Improving Development Environment Using GX Works2)

Learning steps in Chapter 1

This course is intended for programmers working on the development of sequence programs. You will learn how to use the

excellent functions in MELSOFT GX Works2 to solve design site problems related to “productivity,” “quality,” “project
management,” and “security.”

In Chapter 1, you will learn about the problems facing the design site and the development environment required for solving
these problems.

1.1 Problems Faced by the Design Site | o
1.1.1 Improving Productivity
1.1.2 Improving Quality X
1.1.3 Project Management 1
1.1.4 Security Measures

1.2 Learning Procedure

'
W PLC_GX_Works2_Advanced_ENG

} Problems Faced by the Design Site)

While the design site is required to improve productivity to reduce development costs, it must also ensure that the
developed programs are of high quality.

The design site must also conduct project management that allows team development and ensures quick recovery in the
case of tfrouble.

Security measures are also required because sequence programs include important knowledge and data.

o s,
1-G¥_Works2_Advanced_na00115_sng-A i)

»m Improving Productivity)

The design site is required to develop sequence programs to handle large-scale, complex processing.
However, the cost of development increases in line with the length of the development period.
Thus, you are asked to improve the productivity of program development in order to reduce the development cost.

GX Works2 provides the following functions to solve this problem:

« Label

« Function block

* Device initial value and device memory*
= Inline structured text

= Import from sample comment

* The MELSEC-F series cannot configure device
initial values.

ki 1-GX_Works2_Advanced_na00115_sng-A =

=1

»m Improving Quality)

A bug in the sequence program could cause a system stop, fault, or accident, which would halt production and
result in the loss of profit and reliability.
You are asked to develop quality programs that are free of any bugs.

GX Works2 provides the following functions to solve this problem:

Label

Function block

Device initial value and device memory*
Comment

Import from sample comment
Watch

Cross reference

Sampling trace®

Executional conditioned device test”
Step execution function*

I/O system setting

* The MELSEC-F series cannot use device initial value settings, sampling trace, executional conditioned device testing,
and the step execution function.

W PLC_GX_Works2_Advanced ENG

>3

1.1.3 Prnject Management

A large-scale sequence program is often developed by a team of programmers.

From the viewpoint of individual management authority and data confidentiality, limits must be established for the range of
accessible data and usable functions.

In addition, to ensure quick recovery in the case of program loss due to programmable controller failure, you are asked to
implement program version management and periodic program backup.

GX Works2 provides the following functions to solve these problems:

+ Security
+ Revision history
= Verify with PC

'
W PLC_GX_Works2_Advanced ENG

} Security Measures)

The sequence program includes strategically important knowledge and data.

The leakage of know-how and data from the program to the outside could have a devastating impact on business.
Unauthorized modification of the program could lead to production problems such as by stopping the system.
The appropriate security measures must be taken to prevent these problems.

GX Works2 provides the following function to solve these problems:

+ Security

'
W PLC_GX_Works2_Advanced_ENG | =

»“ Learning Procedure)

In this course, you will learn about the GX Works2 functions by following the procedure for actual system
development.

(1) Programimingcocevveveeeereee e ceenniesere e vresnnnnee e e eeannnnns (cNAPLEr 2
R B] e e e R S E S R Chapter 3 ‘
(3) Project management and security measures Chapter 4

<Explanation of icons>

The icons displayed on the pages in Chapters 2, 3 and 4 correspond to the respective improvement functions, as
shown below.

Function used for improving program productivity

Function used for improving program quality

Function used for project management

Function used for security measures

'
W PLC_GX_Works2_Advanced_ENG

Learning steps in Chapter 2

In Chapter 2, you will learn about the functions used for programming.
GX Works2 provides many different functions to ensure efficient programming and improve the quality of programs.

2.1 Replacing the Device Name with a Name Associated with the Application
2.1.1 Label Types
2.1.2 Types of Label Applications and Stored Values
2.1.3 Label Registration
2.1.4 Automatic Assignment of Labels to Devices
2.2 Arranging Repeatedly Used Ladder Blocks as Function Blocks for Diversion
2.2.1 Creating and Placing Function Blocks
2.2.2 Using the Function Block Library
2.3 Changing Device Initial Values without Correcting the Program
2.4 Simplifying Ladder Programs
2.5 Creating Programs that are Easy to Understand and Read
2.51 Writing a Comment for Each Ladder Block
2.5.2 Writing a Comment for Each Output (Coil, Application Instruction)
2.6 Making it Easy to Read Programs Containing Special Relays/Registers

[Chapter 2 Programming)

PLC GX Works2 Advanced ENG s w=h

[uCl e Introduction of System Used for Learning in this Course)

This course employs the following hypothetical system to help you learn how to use the GX Works2 functions:

Process B
{screw clamg

Completed
product sensor

§

Process B defective
product sensor

_

Process A
{component placement)

Process A defective
product sensor

Production line operation panel
Producticn {

:]
o quantitysss
L2

Parts mount

Farts charging :f[]pem lamp Stop lamp W
L Process Adsiact 15
O o pg@nﬂg%gﬂ_. L defe
Normal joess A defact | Producic Process A
; : ™ defect ta
3 production pErCEntagse emmor %@%ﬁ errgﬁgﬁ'lrplzl " —
cess B sg?eggﬁﬁ‘ L o

=]

defect percentage allmtﬁ%-;
. Process B - i -
defect percentage 3
= emor lamp

Pressing the “Back fo Top” button -
retums to the first operation selection. Back to Tﬂp

'
W PLC_GX_Works2_Advanced_ENG

»
Replacing the Device Name with a Name Associated with the Application

A device used in the sequence program is given a name that consists of a letter followed by a number, for example "M0" or
“DE-”.

Thus, the device name does not provide any clues as to the application of the device.

A large-scale program uses many different types of devices, which means that during programming, you must continually
check the system design documents to determine the application of devices. This reduces the work efficiency and adversely
affects the program quality due to errors in selecting devices.

“Labels” can be used to solve these problems.

Instead of using a device name, you can use a name (label) that indicates the actual application, for example “Production
line start signal.”

For this type of name, Japanese (hiragana, katakana, and kanji) characters can be used in addition to alphanumeric
characters.

<Statement for setting “M0” containing the production line start signal to ON by SET instruction>

Device —[SET MO |—
Label —{ SET Production line start signal]—

Using this type of label is effective for creating an easy-to-read program, improving the efficiency of program development,
and preventing device input errors.

Wl PLC_GX_Works2_Advanced_ENG

CE ey

There are two types of labels: “global label” and “local label.”

<Global label>
Global labels are used for an entire project and can be accessed by any program in that project.

<Local label>
Local labels are used in a specific program and can only be accessed by the program in which the label is registered.

_‘.'-Program 1" 'am':!m”F"'rogram 2" are
. buttons.
PrDj ect FPress either program to see if it can
- access the two types of labels.

Program 1

Local label A . : ~ 8 Local label B

Inaccessible

ki 1-GX_Works2_Advanced_na00115_sng-A

)

2.1.2 Types of Label Applications and Stored Values

When registering a label, specify the label application and the type of value that can be stored by using “Class” and
“Data type.”

<Class>
The class indicates the use range and application of a label.
The classes that can be selected vary depending on the type of label.

Intended use G F'-'b"l"f";"
oca oc
= label local label
VAR_ GLOBAL Common label that can be used by programs and function blocks in o " -
a project
VAR_GLOBAL _ Common label with a constant that can be used by programs and
: ;] Ll ® *
CONSTANT function blocks in a project
Label that can be used by programs and function blocks for which
VAR the label is intended " O O
Label with a constant that can be used by programs and function i i
ML 10k for which the label is intended » - =
Label with a constant that can be used by programs and function -
VAR_RETAIN blocks for which the label is intended " S <
Label used for the input of a function block for which the label is
VAR_INPUT intended ” - O
* The value cannot be changed in a program component.
VAR_OUTPUT !_al::el used for the output of a function block for which the label is ” ¥ A
intended
Label used for the input and output of a function block for which the
VAR_IN_OUT label is intended o ” o
* The value can be changed in a program component,

' —
PLC GX Works2? Advanced ENG ==

)]

2.1.2 Types of Label Applications and Stored Values

<Data type>

The data type refers to the type of value stored in the label.

The data type assigned to a label indicates the type and range of values that can be stored in the label and the
corresponding device.

The data types that can be used with ladder programs are listed below.

Data type Description Bit length Range of values stored

_ OM or OFF is stored. , - ;
Bit Gormeapands 1o devics ‘I 1 bit 1: ON, 0: OFF

Word (signed) An integer without fractions is stored. 16 bits -32768 to 32767
Double-word (signed) Corresponds to device "D” 32 bits | -2147483648 to 2147483647

RS EARE L EREEE UV A real number including fractions is stored. 16 bits 2128 o 21, , 2128 to 2128
SN W ER -yl Corresponds to device "D” 32 bits | -21024 tg -2-1022, (), 2-1022 {g 21024

A character string is stored.

Wariabl Up to 255 charact
Corresponds to device “D" b p o 255 characters

String

T Turns ON when the specified time is reached.
R Corresponds to timer device T o -

Turms ON when the specified time is reached.

Retentive timer
Corresponds to retentive timer device “ST"

Tums ON when the specified count is reached.

Counter
Corresponds to counter device “C”

A subroutine start position is stored.

Point
i Corresponds to pointer device “P"

b PLC_G¥_Works2_Advanced ENG

)
Label registration)
[EF MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [Local Label Seiting MAIN [PRG]] _
! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X
NP ALe i BB RRER SO EES S ST A S e) AR e
BT e e T A
: Navigation X 4] [PRG]Write MAIN (194)Step * F%Gluhal Label Setting Glu:ul:ualyv o5 Local Label Setting MAIN [P...] 1 F -
Project Class Label M arme Data Type Canstant i‘
1 |VAR w | Production_gty_attained Bit
EFI Eh 2] |% 2 |VaR w |Partz_input_start_flag Bit
+ Parameter Prod line contr # 2 VAR » [Start_reject_pet_cale Eit
= Inteligent Function Modu 4 -
!} Global Device Comment 5 -
—| & Global Label g -
% Globall 7 -
+| i Program Setting i -
5.5 Py q -
=|+{Z) Pragram 1M -
=8 MATN 11 -
4k| Program 12 -
g Local Label 12 -
[FE_Pool 14 -
[ES Structured Data Type 15 -
(.5 Local Device Commen 15 -
+ % Device Memoary 17 =
+-# Device Inikial value W 10 -
< > 19 -
20 -
Jﬁ Project | -
.| UserLibrary = : Finish the settings for label registration.
. 24 - i
!ﬁ Connection Destinakion 35 - Click ! J 1o pm{:EEd'
- 26 - ’L‘
- ||| 4
Enalish Simple Q03UDE Host Station Lirg ML
] 1 4 M N

ki 1-GX_Works2_Advanced_na00115_sng-A

)

2.1.4 Automatic Assignment of Labels to Devices

Converting a program automatically assigns the appropriate device to the label according to the class and data type.
When using a label, it is not necessary to know which device is assigned.

Use “Device/Label Automatic-Assign Setting” to change the range of devices assigned to the label.

* This screen is the automatic assignment device setting window for the MELSEC-Q and MELSEC-L series. The screen

may differ for the MELSEC-F series. <Starting “Device/Label Automatic-Assign Setting”>
From the GX Works2 menu, select [Tool] -

DeviesLabel Aulomatic-Assign Setiing

evice/Label Automatic-Assign ing].
Set o chydioe Fange: bn aubomatically assion bo labeds. [D Ef = tomatic s g SE“ g]
Labek wi be assied From i ey doven e displayed devics st wben nulbple devices sre seleded, N -
e o] 5 [tz T[S obot control - [[PRG]Write MAIN 194 Step]
- £ iinla-:un et Frd |) Dwerdie Sikting Rangs | | nj Ei
B Ward Dewice ' ' 5 0o indow
i~ VA Rangs & ia T T [T 0= 137 I !ﬂ ﬂ P
t W T 0 -~ iFFF
i P ATH L [i IC Memory Card b . k
L@ vop_pETAM Aange [Latch(l) |Dianch | da | [i b
wiach [18 | - Check Parameter. .. ;
o Lakch | 10 [| | = E_."
B Device . .
i-E YA Ranga M ml s E FET 0 - &6l = Options. ..
| | B 15 a IFFF
L[MR _RETAIN Aange |Latchild |Libskch | 30 n fn - ;
imea e - Key Customize. .. o
B Painler . — =l : : . :
L. o fangs & [0] & | o8] aons] 208 | 709A - 4095 I DEEBCBﬂ.EbEﬂ Automatic-Assign Setting... I
[Temer '
|- WaR Eangs 1 Er g5 am7] 1954 o- 2047 — L
i— WAR_RETAIN Ramgs [Lakchily [Tlekeh |30] = 0 | [| 0 ﬂtﬂ:k Password. .. |
= Retentive Timer ' 3)
L vap Range 5T [m]] | 1 [Confirm Memory Size. ..
i~ YaR RETAIN Hange [Larchiny [Steseh[aa | = | | i
= Counter -
L= VAR Rangh = [m@] ¥ | 52| w3 sis i iz Set TEL Data/Connect via Modem 3
I vap mETAIN Rarge (Latchil) [Slaech | 19 | | | 1]
Latehidh : Abibe o daar e valas by ubng a labih cesr, |_ CPL Lo im|(gis] Cof |' U a0 T | o
Latchiz) £ Unahle to dear the valie by using a labch chear. Jaadng will be exacibad by remota oparathon or program, = RIS, =
(Caube — i i aad —
:I'-.-T.fngl;r::lnunumgm:d dewices, of the sutomatcaly 2ssioned ones whie compiing, will be sfotoed the deace that deplayed at the lowes: EthernEt Mapter MDdUE CDI'IFH;IUI’-EtICH'I TOD|
2 ﬂhtmul-tau had E‘i“‘&&“?!é: :gr-u;::. 3@%‘5’235’3&5&“%“% U aritbintic processing speed for R ard IR B k=i dule |
& Changing L1 TNk e B 5 eSS -
dffgemaﬁumctﬂ fnvices: Bu E-in I'“:I Mo Too 4
(08 Cance " %
| oo | Check Inteligent Function Module Parameter b
Inteligent Function Module Tool b
. Language Selection. .. -

'
kil PLC_GX_Works2_Advanced ENG | =)

»
m Arranging Repeatedly Used Ladder Blocks as Function Blocks for Diversion

In a large-scale program, some ladder blocks may be used repeatedly.

Or, some of the same ladder blocks may be used in different programs.

Work efficiency cannot be improved if you must input the same ladder block every time it is needed.

In addition, if a defect is found in a common ladder block, each block must be located and corrected. This causes a
significant loss of time.

Use “Function Block (FB)" to solve these problems.

A ladder block that is used repeatedly can be arranged as a function block, which can be used in every program. This
greatly improves the work efficiency.

If a defect is found in a common block, all you need to do is correct the function block.

This not only saves time, but also prevents the risk of not correcting one of the blocks.

/

=t rejent pot mik ADD 11 =

1 | B im k ProductionCry 4 | [D3
Procuch
on_yuacd

A m 1| v inpdity Froch_Rrjechvale 4[4]
Input g Process
! A _telec

_vakm

| EEE—— 1| ve ProcARmecPsd FrocE_Rgjechibiz 44 ([Ds]

r @ Ime 1| W ProcERRjeriFnd

Press the button to watch the
animation from the beginning.

/

.

'
W PLC_GX_Works2_Advanced_ENG

)]

2.2.1 Creating and Placing Function Blocks

Since the function block will be used in different programs, real devices (such as X, Y, and D) cannot be used in the function
block. These devices must be replaced by labels as you learned in Section 2.1.
The procedure for arranging ladder blocks into a function block is shown by animation.

1. Prepare a programto be arranged into Count processing 1|
afunction block.

{ X1}

b 4 e Count_Num St

2 Divide the pregram into input and output, and -!-I |_I_ i_C{)UF'It o C UP Y12 ‘j—
replace the internal dewices by internal labek I‘k_ __,'I\ S

to make a function blodk.
Count processing 2|

Create an input/output circuit
3. Place the created function block in the P set parameters}
programusing drag and drop. =“ X2 ; \—

i : Count_MNum2 ok "
Tl bfi_count o_c_up—{(Y22 }—
S

4. Assign parametersto the input and
output lakels of the function block that

wou placed in the program. Brate o Biiton to

r v ¥ return to the first flow

A, Create an input circuit that passes the parameter E
to the input label and an output circuit th at
receives the parameter from the output label,
befare and afterthe function blodk. |

L =

&l PLC_GX_Works2_Advanced ENG e
b
- - -
m Creating and Placing Function Blocks)
[EF MELSOFT Series GX Works2 C:\Sequential Programsle-learning\Robot control - [[PRG]Write MAIN [188)Step *]
! Project Edit Find/Replace Compile Wew Onlne Debug Diagnostics Tool Window Help o =
A=A = IR 2 iob B T e o | R R B | 59 R GRS S0 M IR A B R B g b 0 W L |
] 2 | 2| B o2 for @i HE DY S aah B SR LG mE MR 2
: Navigation X 4] [PRE]WritE MAIN (188)5te...]’i@embm Label Setting Globall r g5 Local Label Setting MAIN [PREG] r g5 FunctionfFELat 4 P =
Project St e : T —
L | Binl Prochtiencty W [MDa 1 3
[P 2y 7 By (2] -
+ Parameter Prod line contr t:ml I'
Inteligent Function Madu
i}' Global Device Cornment
—| & Global Label
% 5loball [DEI]. Wty ProciPejeacaus W .[I:I4]
p Skt e o Processs
i %Proﬂugram =g i chedect
Walue
=|+{-) Pragram
Bl MAIMN
He| Program
g Local Label ro]_ W ePrachReectPrad FrocBRejeciaueW | DS 1
- .,__.: FE_Pool L:"uc'."'-' Projoesss
e d_l':\DD_l B r:j_-:x':q: i-:llc!;clx':
He| Program
g Local Label
(ER Structured Data Type ™
< | » oz W ProcBReectProd
......... _—_— =
% PI‘DiEEt r:f_-:sc':q:
|__1'I Userkibrary Finish creating the function block.
!i Connecktion Destinakion 135 [= o o3] Click ? J 1o prﬂceed.
" i
- b
Endlish Simple Q03UDE Hosk Station (13 ML
+ » 4 K

ki 1-GX_Works2_Advanced_na00115_sng-A

m Using the Function Block Library

You have now learned how to create a function block.
Mitsubishi Electric has arranged the control programs of various modules such as CPUs, analog input/output modules,
networks, and positioning modules as function blocks, which are available free of charge as the “FB Library.”

Using the FB library eliminates the need to develop module control programs, which was traditionally the users’ responsibility.
Even modules that you are not familiar with can be easily introduced.

The FB library can be downloaded from the “MELSOFT Library Download” page on the MITSUBISHI ELECTRIC FA Website.
* Click the following URL to access the download page.*

http://wwwif2 mitsubishielectric.co.jp/melfansweb/plceng/download/library/index_e.htm

<Before> <If you use the FB library>

* There is no FB library provided for the MELSEC-F series.
The supported models are listed on the download page. Please check the supported model before downloading.

'
Wl PLC_GX_Works2_Advanced ENG | =

Changing Device Initial Values without Correcting the Program

The initial value or constant of a device is normally set using the MOV instruction before the main program processing.

In this case, the program must be directly corrected each time the program operation is changed according to the system
application.

Mot only is this method time-consuming, but there is also the risk of correction errors or failure to make a correction.

Use “Device Initial Value™” to solve these problems.

Using the GX Works2 function ensures proper management of device initial values and eliminates the need to make program
corrections, thus allowing you to create programs much more efficiently.

In addition, this function eliminates the need for an initial device value setting program, which would reduce the program
volume (memory usage) and decrease the risk of failure.

For the device initial value, specify the range of devices for setting the initial values.

Actual initial values are stored in the device memory and are assigned to the device range specified.

With device memory areas prepared according to the system applications, the device initial values can be changed by simply
changing the device memory area to be assigned.

SO0 1 dﬂl[ﬂ] Dk
=it {MOY K20 Digg) :
4
]
imMov Kio D §
I 1 2 i
IMOV KS Dz)
Btast Al
—i } —
e S A
- HK“'?(' n /

' I
W PLC_GX_Works2_Advanced ENG =

“ Changing Device Initial Values without Correcting the Program)

o MELSOFT Series GX Works2 C:\Sequential Programsie-learningi\Robot control - [[PRG]Write MAIN (166])5tep *]

! Project Edit Find/Replace Compile Wew Onlne Debug Diagnostics Tool Window Help -8 X
NERAlLe 086 By T o | B B | m am g Fa) E e e 0,8y [

LF | =l ER ms = F5 =F5 F& zF& F7 _FasFa dF .:Flg.ju SE7 cFg aF7 aFs | S4F5 sabe safy safs | aks r5 1H0 F0. 3 ; s
5 R) 0 50 5 U556) o o 5 S5 B
Navigation & x_ 4¢] [PRG]Write MAIN (166)5te... * r%Glabal Label Setting Globall i’gmcal Label Setting MAIN [PRiE]] 1 b -
Project ~

] ;

(o o =
' % Glu:ul:uall A
i+ Program Setting
=% poU

E .Ej Program

' Ak} MATH 14— | 4 ‘ 3

“-4n] Program
r@ Local Label
ﬁ FE_Pool

Structured Data Type
.! -4 Local Device Commen

= @ Device Memary ‘)
S mam
S Prodgbyl
= Lﬁ Device Initial Yalue
5 man |
B ¥

Finish setting the device initial values and device
Memory.

Conoechionbestinabion i |

Click [#) to proceed.

Enalish Simple - - - . el L

'
W PLC_GX_Works2_Advanced_ENG

@3 simplifying Ladder Programs

In a large-scale ladder program, the connection of devices, instructions, and ruled lines can become quite complicated, making
it difficult to grasp what processing the program performs.

In particular, numerical calculations, such as a formula completed on a single line, must be programmed using a combination of
instructions.

Use “Inline Structured Text"” to solve these problems.

A ladder program is replaced by a program that is partially written in structure text (ST) language.

The ST language is a sequence control programming language similar to C language used for computer software programming.
MNumerical calculations can be writlen using formulas, so even programmers who are not familiar with C can use inline
structured text.

The following figure shows an example in which part of the ladder program for the system is replaced with inline structured text.
You can see that the complicated latter program is now easy to understand.

D3=00-01-D2;
INT_TO_REAL_E{Start defect percentage calculation, D0, ingpdy;
INT_TO_REAL_E({Start defect percentage calculation, D1, inp1];
— INT_Ti2_REAL_E{Start defect percentage calculation,D2,inp2);
IF inp0=E0 THEM
resulth ={inpHinpO*E100;
s e s S ErD_IF;
- Dz =D0-1-0 FREAL_TO_INT_E{Start defect percentage calculation, resulta, D4);
im0 DTG
INT:TD:REI“L:E[;:'.E.': -{5-::' L—:E';gih:: oz, :-D Eesglt?ﬁftlnpzmnpn_lnm:':' L
IF fipl = E0 THEN | REAL TO_INT_E{Start defect percentage calculation, resultB,Da);
resulth s=lingi { ing) * EA00

[

i

Press the button to watch the
animation fram the bedinning.

o

-

'
I PLC_GX_Works2 Advanced ENG = [

3
“ Simplifying Ladder Programs)
o MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [[PRG]Write MAIN 114 Step]
! Project Edit Find/Replace Compile Wew ©Online Debug Diagnostics Tool Window Help - 8 X
MR e ﬁ?a‘é-fé A | EE B b | S0 3 8 T AT | T I ﬁﬁrﬂ%ﬁ’l.ﬁiﬁﬁﬁnlﬂ b e
= iy ; i 5 b
.l Bk =" E m | ¥ 5 ?Q" | @ | Iﬁ : -I 2 I-lFE ﬁ Ij-l-:fél _ﬁr?} { | F3.ska ZFh EEI_I'.I | ﬂ? ::NEI; L—ﬂ# La!qug =5F5saF6 a7 Eadrd; anl-'-: -:.a.¢ o | AL P g L =t =
:_,Nﬂ‘-'lq_ﬂtlﬂn ‘;‘ s 4] [PRG]Write MAIN 114 Step r%GIDbaI Label Setting Globall Tﬁmcal Label Setting MAIN [PRE]] 1 F
SRS iy INT_TO_REAL_E(Star_reject_pct_calc.D2inp2): Al 2
EF- \ Eifl' Iﬂ |q;n, I IF inpl=E0 THEW 3
_ EE rezultd: =[inpd AnplE100;
[Parameter Prod line contr # EMD_IF:
Inteligent Function Modu REAL_TO_INT_E[Start_reject_pot_calcresuld D4);
P ; IF [inp0-inp1)=E0 THEM
: t-} Tkl et resultB:<{inp2/finpC-np1 [E100;
= lﬁ Global Label END_IF: =
% Globall REAL TO_INT_E[Start_reject pot caleresultB DE]] bl
+ E Program Setting
POU H7) {- g la1] 03] { ;I
(= .:3 F‘ru:ugram kil
i T MF\IN -! crchi 1 LEFT
~ -4k Program g
-@ Local Label
@ F&_Pool
Structured Data Type (3 &
P ,_ﬂ Local Device Conmen
[+ g Dievice Mermary
-4- Dievice Initial Yalue S
| L
AE Project e - [o ::.|-_:.| i] ()
e R ... |Finish setting the inline structured text.
4 Connection Destination : Ak UB) By priener
>
i - ns [az o
Enalish Simple Q03LUDE Host Station (53 MLE

'
W PLC_GX_Works2_Advanced_ENG = =

m Creating Programs that are Easy to Understand and Read

You may find it difficult to understand the details of control in a large-scale program by just looking at the program. The
following problems can occur as a result:

= You make program errors (such as input of incorrect instructions or devices).

* You are unable to find the causes of program errors.

« Someone taking over the programming cannot understand the details of control.

Use “Comment” to solve these problems.

Memos such as control information and device names can be attached to the program so that the details of control can be
easily understood.

These comments should be input wherever possible to create programs that are easy to understand not only for you, but
also for others.

xE xy X5 X7
o H—H {¥o H o1 H {vo H
Shart =w Doar ope Robot =t
itch e i U
_('n }- e :|-
Caratic
S o i iy
<—H {2 H s—H {2 H
Hobot st Stop lan
: B
& [END]. Bp— [END '_[.

GX Works2 allows the following comments to be input.

Comment type Comment range

e A comment can be attached to a device.
This comment indicates the application of each device and the type of connected /O device.

A comment can be attached to a ladder block.

Sieiaut This comment makes the flow of processing easy to understand.

A comment can be attached to a coil/application instruction in the program.

Mote : ; o e .
This comment makes the contents of a coil {output) and an application instruction easy to understand.

r n
K PLC_GX Works2 Advanced ENG =] o |

> Writing a comment for each ladder block)

[EF MELSOFT Series GX Works2 C:\Segquential Programs\e-learningiRobot control - [[PRG]Write MAIN 145 Step]

! Project Edit Find/Replace Compile Wew Onlne Debug Diagnostics Tool Window Help -8 X
PAAle LB e RRERSSERS SRR S S S e e 88

el) R e | Dl B e e L L 26 K 1}?_1#53?##5 o I 0 2| s ks e Fe 35 Illl*ﬁ

i

: Navigation X 4] [PRG]Write MAIN 145 Step] 1 b -

Sl ol oty el -~

EP . Eh 2] |%" i _JIH [o K 01400 | i =

+ g Parameter Prod line control

Inteligent Function Module : P! !
i_} Global Device Comment o
|5 slobal Label
| 4 Program Setting
5 pol [[ew Kl ai 1
= _'“_“, Program
21 HEL MATN ‘M
4k Program ;
ﬁﬂ Local Label
8§ FE_Pool
[BS Structured Data Types [Moy kS gl 7
_rj Local Device Comment _ :

H % REip emany The line statement has been input at the beginning of the ladder block.

Cevice Initial Yalue i

T]-[F[F

bl
Jﬁ Project . I A0
{]] | [\.‘HI ;I

vt Finish setting the line statement.

< ; - |
w o o e Click | # J {o proceed.

>
-

Enalish Simple Q03LUDE Host Stakion (7 MLE

£] M

i
I PLC_GX_Works2_Advanced ENG = [

3
m Writing a comment for each output (coil, application instruction))
B MELSOFT Series GX Works2 C:ASequential Programsie-learning\Robot control - [[PRG]Write MAIN 181 Step]
! Project Edit Find/Replace Compile Wew ©Online Debug Disgnostics Tool Window Help -8 X
[ALe PiXBre s RRER SRS ERE S A
T
.Iﬂl-lﬁm’lm‘I o @ dh iR S L B L kG e B A B 2
: Navigation . x ++] [PRGIWrite MAIN 181 Step] A
Project : -~
['-.I Al oia }
., Gy |2) | M- s
[+ F‘arameter Prod line control 5 i
Inteligent Function Module i =
' t_} Global Device Comment
i+ Global Label
+E Program Setking [Mo 10z i
T POLI .-_.. _- .-
=i ,:\J:' F‘ru:ugram e
i] MAIN y
~ -4k Program
; r@ Local Label Sy
@ FE_Pool X
Structured Data Types a2 — | £ 3
e ,_ﬂ Local Device Comment brerkey
+-i3 Device Memmory - E e 5 =
B Dievice Tnitial Yalue A note has been Input at the [I]Sltlﬂﬂ of the coil I:MTIJ
SERFEFE J } < St imgictiien] ports
% o 10l ¥4
roject (" | | M
Finish setting the note. mnr
B —— LY
E Click [%) to proceed.
o | | £
= adl N>
Enalish Simple Q03LUDE Host Stakion (37 MLE
IS S, 1 —

W PLC_GX_Works2_Advanced_ENG

»»
Making it Easy to Read Programs Containing Special Relays/Registers

If special relays, special registers, and/or intelligent function module devices are used in a program, it can be difficult to
understand all of the applications and functions of these devices. You need to read the program with the manual in your hand.
Although the program would be easier to read if a comment is attached to each device, considerable time and effort would be

required for attaching comments if many devices are used.

Use “Sample Comment” to solve these problems.
GX Works2 provides sample comments describing the applications and functions of special relays, special registers, and

intelligent function module devices.
Using these sample comments makes it much easier to attach comments to devices to make the program easy to read.

The sample comments can be modified as necessary.

'
W PLC_GX_Works2_Advanced ENG R

653
“ Making it Easy to Read Programs Containing Special Relays/Registers)
o MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [[PRG]Write MAIN 194 Step]
! Project Edit Find/Replace Compile Wew ©Online Debug Diagnostics Tool Window Help - 8 X
RN =N = N o R e N R IR S e AR RN A Y Tl e
i
EET=E I el e R T T e -
_;,P*ﬂ‘-'lq_ﬂtlﬂn ‘;‘ 2 4] [PRG]Write MAIN 194 Step rl}Device Comment COMMENT] 1 F
Ifl‘[:'l‘iE.lZ't VA0 e
y o _| I ['vl o KX D00 } =
IR W resoodi | |
[#-{&% Parameter Prod line contral s ; S
o fiuk Inteligent Function Madule
- ¥ Global Device Comment Check the ram to see that sample comment “Always ON” is applied to SM400.
prog p Y Pp
£ ,ﬁ Global Label
[+ E Prograrn Setting ['\1 KA 01m }
= pau i
=l 3 Prograr
L e MATN
-4 Program
----- r@ Local Label
& FE_Paal Moy Dz 1
i T? Structured Data Types .
' Local Device Comment :
[+ Device Memary
[+ ™ Device Initial Yalue
P
S | _} 2 _| I £ ¥ ;,
,_E Prgj!_:_ct *
'..Ltse Library Finish the automatic setting of a sample comment.
o - I i e Click [& to proceed.
]
% Connection Destination 4 _|| | s
¥ | ¥ 7] 1 ?;
Enalish Simple Q03LUDE Host Stakion (15 LK

et) —

'
W PLC_GX_Works2_Advanced_ENG

[Chapter 3 Debug_ging

Learning steps in Chapter 3

In Chapter 3, you will learn about the functions used for debugging.
GX Works2 provides many different monitoring and debugging tools to correct errors (bugs).
Creale error-free, quality programs using these monitoring and debugging tools.

3.1 Monitoring Only Target Devices and Labels
3.2 Checking Use Status of Devices and Labels
3.3 Collecting Information on Device Value Change over Time
3.4 Changing Device Values without Correcting the Program
3.5 Debugging Program Operation Step by Step
3.5.1 Using the Step Execution Function
3.6 Simulating the Operation of an External Device
3.6.1 Inputting Device Values for Setting the 1/O System
3.6.2 Using the Timing Chart Format for Setting the /O System

W PLC_GX_Works2_Advanced_ENG

} Monitoring Only Target Devices and Labels

A program uses many instructions and devices.

In addition, the long vertical length of a program means that only part of it is displayed at a time on the PC monitor
screen.

Therefore, the ladder monitor alone cannot monitor the entire operation.

Use “Watch" to solve these problems.
This function can be used to monitor only the devices and labels that you have specified in advance.
Two or more Waltches can be created to ensure that each range is monitored.

i
kil PLC_GX_Works2_Advanced ENG S

} Monitoring Only Target Devices and Labels)

[BF MELSOFT Series GX Works2 C:\Sequential Programs\e-learning\Robot control - [[PRG]Monitor Executing MAIN (Read Only) 194 Step] [= |[B][X]

! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X

NERAle g icbEn T o | EREREG S GRS R A i i e

el) = BB T BB o | D)l L L) S 6 | I U e b | S sl i) T b o b T) b 2 2B

g E T P % % B B %% e

: Navigation 1 x 4¢] [PRGIMonitor Executing M... l 1k -
S
Wi B
EP—J _'.Ehlﬂ|%' e -
+ Parameter Prod line contr ~
Inteligent Function Madu
4% Global Device Comment d
+- (% Global Label E
+ Program Setting — Switch
-4 PoU [e * RUN
= @ Progranm
—-{ e} MAIN LED
4kl Proaram RODE
RLIF
- ERR.
- USER g
: watch 1 The present values of the devices registered with Watch 1 are monitored. k
DeviceLabel | Curel«¥alue | Data Type | Clazs | Device | Camrment |
Al] Bit Al Start switch
#1] Bit #1 Partg input zensar
#e 0 Bit #e Finish Watch registration and monitoring.
=a 1] Bit =a
Click &) to proceed.
M watch 1 L Wakch 2 I
Enalish Simple Q03UDE Simulation (54 Nl.i-‘l

|E’_| | " | |_‘E’_| |_‘ﬂ’_| _.

W PLC_GX_Works2_Advanced_ENG

} Checking Use Status of Devices and Labels

A program uses the same devices and labels at different locations.
You may want to check the use status of these devices and labels by comparing them between locations.

Use “Cross reference” to do this.

This function lists the locations of the devices and labels matching the search conditions so that you can compare them and
check for incorrect usage.

Kl PLC GX Works? Advanced ENG [= ﬂj

»m Checking Use Status of Devices and Labels)

[B- MELSOFT Series GX Works2 C:\5equential Programsle-learning\Robot control - [[PRG]Write MAIN 194 Step]

! Project Edit Find/Replace Compile Wiew Online Debug Diagnostics Tool Window Help - 0 X

NBALe - 36 B T b oot | | 0 I I e L D e 0L e

o]l | = 1 GRR | o o | @ it S m S R RS Lk m MRS

: Navigation 1 x 4] [PRG]Write MAIN 194 Step] 1 b -
" S

Wi B
?—J .J.% @l%‘ T;:_H i o1 D2 D&
+ Parameter Prod line cantr A e e Tees

Inteligent Funckion Madu
A:¥ Global Device Cormment
+- {5 Global Label

+ Program Setting - 5
-5 poll . b3 i
= {3 Program The program cursor has moved fo the position of step No. 74. i de Prak
T
< | >
% Project)))
[- LT i} . ngli] }
Ly g 2 3
i Cross Reference o x
Crozs Reference Infarmation l Condition Setting
Device/Label | 01 j | Find Print. .. Print Prewview. ..
Device/Label Device Inskruckion Ladder Symbol | Position Muaka hlarme ~
Finish using Cross Reference.
iED1 o1 +P 17T Step Mo.63 = B
T S P S T Click (% to proceed.
¥ o1 ol FLT 1T Step MNo.92 e
5: device/cross reference information of label "D1" d,
English Simple Q03U0E Hosk Station (5 MLE

)) ——

ki 1-GX_Works2_Advanced_na00115_eng-A =

ﬂ Collecting Information on Device Value Change over Time | Quaiity

You may want to confirm that the changes in device and label values are within the design range or perform
troubleshooting by checking the changes that have occurred in the event of a failure.

Use “Sampling Trace” in this case. (Only for MELSEC-Q and MELSEC-L series)

This function can be used to monitor and record the changes in device and label values over time. The record can
be saved to files.

i
L PLC_GX_Works2_Advanced ENG S

m Collecting Information on Device Value Change over Time)

[BF MELSOFT Series GX Works2 C:\Sequential Programsie-learninglRobot control - [Sampling Trace]

! Project Edit Find/Replace Compile Wiew Cnline Debug Diagnostics Tool Window Help -8 %
NP A e PR el D I TR Y e sl S B H S R X Y

[3 D BB B dar | @ s O RO compenon |55 e ia B8

igtat s AtIEC R A ER A AizEIRBISAREE

: Navigation oS 4b| [PRGIMonitor Executing MAIM {Rea./%Sampling Trace * l 10 <
Project =4 DevicesLabel Device Cormment Data Type i‘
____l 240 250
iy e | B 2 A Parts input st: Bit B
+ Parameter Prod line contr A M'I M'I Start reject pe Bit Ei
Inteligent Function Modu b2 b2 Production gt Bit B
4-¥ Global Device Comment Nk D3 Froduction qu *word[Signed] D x
+-{§5 Global Label D4 D4 Process & de Word[Signed] D1 b
+| i Program Setting D5 D5 Process B de ‘wWord[Signed] ol x
= POl w0] Start gwitch Bit B!
=-{3 Program 1 w1 Parts input s Bit B !
) MAIN 2 K2 Proc & defec! Bit B!
##] Program 33 53 Proc B defec! Bit B |
e Local Label
[FB_Pocl -
SR LT D3 D3 Production qu Word[Signed] K
{3 !—'3":5| Dievice Commen 04 C4 Process & de wWord[Signed] D1
+ @ Cevice ME"”'?'W _ v B]3 D& Process B de Word[Sigrned] D
43 |
,% Project
| User Library Finish setting the sampling trace.
¥ Connection Destination Click () o prooeed.
= |l <

Endglish Simple Q03UDE Simulation Pl i

|E’_| | " | |_‘E’_| |_‘ﬂ’_| _.

00C
m Changing Device Values without Correcting the Program

When performing debugging, you may want to forcibly change device values to check the difference in program
operation.

However, this means that you must modify the program each time a device value is changed, which takes considerable
time and effort.

In addition, if you forget to set the modified program back to the original settings, it may cause another failure.

ki 1-GX_Works2_Advanced_na00115_sng-A i =

Use “Executional Conditioned Device Test” in this case. (Only for MELSEC-Q and MELSEC-L series)

This function changes the device values upon execution of the step number specified in advance, without your having to
modify the program.

i
L PLC_GX_Works2_ Advanced ENG S

b
m Changing Device Values without Correcting the Program)
[BF MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [[PRG]Monitor Executing MAIN (Read Only) 194 Step]
! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X
A e gibE T | BRERER MBI MR AN s gira0] B
ee]| g | =) B 2| o - | [g i St A L T G | M A aIS s ane i BT A S
gty IR A A% A IzEIREBI %A R EL
: Navigation 1 x 4¢| [PRGIMonitor Executing M. r£5ampling Trace I 1 -
Fy
[*.T D20 05 } N
? 22 _J' % Iﬂ | %T -I-:I-_I-_I-_I -h-_l
+ Parameter Prod line contr - , | .: , | .:
Inteligent Function Madu e e
A-¥ Global Device Cormrment
+- (% Global Label
+ Program Setting S o o3] e [}
=1 POl !
= @ PI’DQI’EIITI ;I:: .-I'.I..llll;'i: .-I'.I..l: II
B} MAIN fir v : ttared
4k Program rme
‘a5 Local Label
[FE_Pool i [
™| GX Simulator2 [~ | | * —
A=
Switch) o =
W2
{ i sTOP & RN {47} _I_[04 oo] £ ;I
LED)) a) 10
MODE I' I Finish the Executional Conditioned Device Test.
RUN o - o Click [®) to proceed.
ERE.
IUSER [» D5) Z;I-.l.dr] o
Enalish Simple Q03UDE Simulation (13 L
|E'_| | " | |l| |L| _.

ki 1-GX_Works2_Advanced_na00115_sng-A

»ﬂ Debugging Program Operation Step by Step

Use the “Step Execution Function” to solve this problem. (Only for MELSEC-Q and MELSEC-L series)
This function enables program execution one step at a time and thus implements step-by-step debugging.
Use the step execution function together with the simulation function. (The step execution function cannot be used for

debugging on an actual PLC))

The following functions can be used by the step execution function.

Function Description

This function executes the program until the specified break conditions are satisfied.
Break = i |
= i Program execution is stopped when the break conditions are satisfied.
Use a break point and break device to specify the break conditions.
o This function executes the program step by step
execution]
i This function executes the ram only from the specified location
execution prog y (i '

During debugging, you may want to confirm the instruction execution in each step or check for changes in a device value.
However, step-by-step debugging can be difficult due to the fast program execution speed (scan time).

ki 1-GX_Works2_Advanced_na00115_sng-A

>m Using the Step Execution Function

Specify a break point and break device as the debugging start location and start condition, respectively.
You can also specify a skip range within which you want to temporarily avoid program execution. (Only for MELSEC-Q and
MELSEC-L series)

When the break conditions are satisfied after break execution is started, program execution is interrupted.
Thereafter, while executing program operation step by step with the step execution function, check for device value

changes to locate a fault.

<Break point>

Set a break point where you want to
interrupt program execution.

Specify this in units of steps.

Up to 64 break points can be set in the
entire project.

<Skip range application>

<Break device>

Set a break device based on which program
execution is interrupted when the device or
label value satisfies the specified condition.

Up to 16 bit and/or word devices can be set.

<Skip range>

Set a range within which the program should
not be executed, in units of ladder blocks,
during step execution.

Up to 16 ranges can be specified in the entire

D 7%

=

A failure point can be narrowed down by using the skip range.

Perform break execution with and without a skip range set.
If a failure occurs only when the skip range setting is released, this indicates that the range includes a fault.

' -
@ PLC_GX_Works2_Advanced_ENG SN

m Using the Step Execution Function)

B MELSOFT Series GX Works2 C:ASequential Programsie-learninglRobot control - [[PRG]Read MAIN (Read Only) 194 Step]

! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X
NP ALe vagfar;*mmw@@maﬁmﬁﬂ@@@:ﬁﬁ@.%é& I T

Rl e = R B s L e LS I S SR e 'ﬁ; Taee -
Nﬂ*lgﬂtlﬂn ? . 4] [PRG]JRead MAIN {Read Onl... =] 140 -

Flrn]ect 1 |-i- -.Ip.. =]
&L £Ma =;

W =] 1_'| Eh]ﬂ| h _*I!I :'.:-'-:{f \:_‘ e .:l

[+ & Parameter Prod line contr # i pass |

|} Inteligent Function Modu - =

- M Global Device Comment

(5 Global Label

[+ #5 Program Setting i
=T POU
=y Program
= MAIN
: B -

il
a5 . J’I {TI;’ ;|
Frockict 1
M
e
[~ Cornbination —
! ondition ane] el Al | % Nidge eack-bresk devies (OR conditiony © Jodoe sl break devices {aNE condition)
: Enable/Disable T-Cumparative Source (Device/Label) | Condition : Comparative Target (Yalue/Device/Label) Ju Comparative Tvpe: M
Debugging is completed. Finish the step execution
function.
Click [%) to proceed.
E Skip Range L ?é‘ Break: F‘u:uiﬁ\ 'g" Break Device
Enalish Simple Q03LUDE Host Stakion |i52 N_l_}_fl

N R T —

r I
W PLC_GX_Works2_Advanced_ENG =T

} Simulating the Operation of an External Device

Debugging in conjunction with the operation of an external device is not possible in a development environment in which an
external device cannot be used, such as the simulation function.

To solve this problem, a debugging program that simulates the operation of an external device is conventionally added.
However, not only does it take considerable time and effort to create a simulation program, but it is also necessary to modify
the program when changing the operation.

Use “I/O System Setting” to solve this problem.

This function can simulate the operation of an external device without using a debugging program.

The operation of an external device can be easily set or changed in the setfting window. Therefore, conventional program
creation/madification is not necessary.

The operation of an external device can be set in the following two ways:
<Setting device values>

The specified device value can be changed at the timer-set time after the specified conditions are satisfied.

<Setting in timing chart format>
A device change that has been set in the specified timing chart format can be driven when the specified conditions are
satisfied.

r I
kil PLC_GX_Works2_Advanced ENG —E ﬁ

»m Inputting device values for setting the 1/0 system)

[BF MELSOFT Series GX Works2 C:\Sequential Programs\e-learning\Robot control - [[PRGIMonitor Executing MAIN (Read Only) 194 Step] [= |[B][X]

! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help - 8 X
. . g iy o H
-DE@HIE %:as T i | Y B By | R E ﬁ_'mﬂlﬁﬁlﬂﬁﬁ G L WO -
: RN | i - = = Y -
: : F; £S5 Ig-l-:f_l _i:?} . i | . sFa E)i‘% AL | -IEF 1“&1 T F:I F _]# ﬁa ﬁ# sqadrj; aEs ¢r5, Iﬁ __. | s S S
4 F -
) | o
S0 =
I__“P % |i] | %' : Ly - [H1 gt 2l
[F‘arameter F‘ru:u:l |II'|E n:u:untr ~ . : & :
=% Inteligent Function Modu 2 Vg
. V- Global Device Comment
*|- (¥ Global Label
i+ Program Setting
=24 PO [K10 o }
-] P [.
=i} Prograrm = 1
L= MAIN
_H Frogram g
“del Local Label |
E FE_Paoal
~{B® Structured Data Tvpe [K5 T j
€ pESET O STOP (% RUN aion
s
g - Finish the device value setting and execution.
MODE = .
S et Click [%) to proceed.
ERR.
LISER b

Simple Q03LUDE Simulation [0 ML

_E-:*_ll I} L,_,_H,,,l Li].';- A

i
Ll PLC_GX_Works2_ Advanced ENG S

»m Using timing chart format for setting I/0 system)

[GF MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [[PRG]Monitor Executing MAIN [Read Only) 194 Step]

! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X
A e icbE T | EREREG SNSRI A i e

el) = R BB o | D)l L L) S 6 | I U I b | S il i) T b o e T) b 2 2B
gt P E R 2R % A IZEIRBI %% REE

: Navigation 1 x 4¢] [PRGIMonitor Executing M. l 1k -

PI‘DjE[t | Serwciuled pro oty soting | -
SU400 =
EP S % Iﬂ | %' U _I [1) gt } =
+ Parameter Prod line contr ~ - . *_-'
Intelligent Function Madu L |::
4 Global Device Comment R
+- (% Global Label e
+ Program Setting
—1. 45 pold [1 K10 gl }
- @ Progranm -..H
{4} MATN e
4] Program
‘a5 Local Label |
[FB_Pool
(R Skrurtured Daka Twene Y] ¥ ooz }
™| GX Simulator2 [~ | | x
B cheke
Swiktch J
i e RLIM | lime =4ar1
X
LED o] Finish the timing chart setting and execution.

rADDE St 5y
o Click [_#) to proceed.

RLIkM

ERE.
ISER Il
zh Simple Q03UDE Simulation (0 L

'
W PLC_GX_Works2_Advanced_ENG

(Chapter 4 Pruject Management and Security Measures

Learning steps in Chapter 4

In Chapter 4, you will learn about the functions used for project management and security measures.

4.1 Preventing Leakage of Know-How and Unauthorized Modification of Programs
4.1.1 Limiting Accessible Data by Each User

4.2 Project Backup and Version Management
4.3 Comparing Programs Saved to Programmable Controller and Personal Computer

W PLC_GX_Works2_Advanced ENG

)
Preventing Leakage of Know-How and Unauthorized Modification of Programs

The sequence program includes strategically important know-how and data.
The leakage of know-how and data from the program to the outside could have a devastating effect on business.
Unauthorized modification of the program could lead to production problems such as by stopping the system.

Use “Security” to solve these problems.

This function limits the users who can access each project under protection by password.
It can also limit the range of data or functions that each user can access or operate.
The function thus prevents unauthorized users from browsing or editing programs.

'
kil PLC_GX_Works2_Advanced ENG = =

)]

4.1.1 Limiting accessible data by each user

A large-scale sequence program is often developed by two or more programmers sharing the work.

In a case of team development, the range of accessible data and available functions must be properly managed according to
the work range and skills level of each programmer and the confidentiality of the data handled by each programmer.

This access management can be implemented by setting security access levels.

<Access |level>

Operation privileges for the data included in the project can be set for each user.
The following five access levels can be set.

Access level Operation authority

High| Administrators Administrator level Authorized to use all functions.

Developers (Leveld)

Security settings, data accessing and some

Developers (Level2) Developer level opsratione ars nesiried.

Developers (Level1)

Only project data browsing is available_Unable

Users Operator level to read from PLC CPU.

Low

' I
W PLC_GX_Works2_Advanced ENG =

} Limiting accessible data by each user)

! Project Edit Find/Replace Compile Wew ©Online Debug Diagnostics Tool Window Help - 8 X
NPRALe g FEAEREL L L LT FEF .Y E EIEV IR i

|_|| ﬂ | -l ﬁ = | e ?Q" | @ | _I|-'5|_ I:-,I = _#;r_ L‘-l-:f_l f-‘?} + }l JE2 :ll-'n fs .:;lf;u ;IEI; 1#'%!1# '..:!.JF'F | F5 r& a7 sareb| 3RS ca¢F5 u?nL Fii 5 a .'| _|_|._ fu-‘c“> ":f-
E 2 ZEE: i eEd L i o 0kl {

g
: Navigation B X 4] [PRGIRead MAIN {Read Onl... %] o S
ﬁrdie.[t] F | i oy ol e

- T E 2] | M~ i R K2 o100 15
1344 Parameter Prod line contral 5
3 Inteligent Function Module frroks
% ¥ Global Device Comment %
=+ (i Global Label
[+ fid Program Setting
=84 rou [i b 1

E .:fﬁ Program
L AR} ML
b -r_] Prograrm
i Local Label
.g FB_Pool
Structured Data Types [1 K& oz }
' |I_f| Local Device Comment

[+ Device Memary
[+ Device Inikial Yalue

- |
X
)ﬁﬁ;ﬂjﬁft Sy - e
! User Library e Finsh the Secuity Selfing.
| Connection Destination Click [&) to proceed.
§ » i1 L]
ST 2 =it b
Enalish Simple BT Q03LUDE Host Stakion (15 MLE

W PLC_GX_Works2_Advanced_ENG

m Project Backup and Version Management

An important program could be lost due to programmable controller CPU failure.

If a backup program is not available, there is litlle hope of a quick recovery.

Even if a backup program is available, it would be difficult to determine if the version is the same as the lost program unless
version management is secured.

To be prepared for unexpected circumstances, it is necessary to conduct periodic backup and ensure version management.

Use “Change history” to solve these problems.
This function can record up to 100 sets of change histories (history number, date/time, user, title, comment) of the project.
The project data at the time of recording is also backed up at the same time.

Version management ensured by the change history function allows you to restore lost programs, verify program versions,
and thus implement quick recovery in the case of unexpected circumstances.

Where is the
latest version?

Kl PLC GX Works2? Advanced ENG

»m Praject Backup and Version Management

Edit Eind/Replace

: Project

A=A = R

Compile

Wiegw Online Debug

Diagnoskics

Tool

Windo

- g b B T e o | R B g | B0 g g S ST N TR A | L o

-8 X

o) 3 L e |

Help

e 2 | B BR B B i [@ g

F5 =F5 F& =F& F7

AR HH 4 Uy L]

| Fa sts & o

L I e s
sF7 sF& aF7? aFs

T HE YR U
zaf5 saf6 zaf7 zafs

aISu:aFSoaPIIJ F1D%|@I|$ﬁﬁ ‘

1 x

: i Mavigation

4¥] [PRG]Write MAIN 194 Step

l

Project

[oo 5 b [2)] So-

+ Parameter Prod line control s
Inteligent Function Module
4% Global Device Cormment
+ @ Global Label
+ Prograrn Setting
- poU
- E‘:" Pragranm
-1

Bl MAIMN
4k Program
é Local Label
+- 75§ FE_Pool
(B Structured Data Types
Local Device Comment

B Device Memmory
Device Initial Yalue

% Project

| user Library

Connection Destination

»
-

5400

-

[1 K10 :fll-.ll . :l_

)

{'r 10 ;|
Finish the change history registration, restore
process, and verification.

Click [&) to proceed.

Endglish

QO3UDE Hosk Skation

an oW g

W PLC_GX_Works2_Advanced_ENG

)
Comparing Programs Saved to Programmable Controller and Personal Computer

MNormally, programs are saved to a PC in the development environment and they are also written to the PLC.

These two programs are not always the same.
Performing only a visual check to see if they are the same could result in errors.

Use “Verify with PLC" to solve this problem.
This function can verify that the program opened by GX Works2 matches the program written to the PLC.

L PLC_GX_Works2_Advanced ENG S

b
m Comparing Programs Saved to Programmable Controller and Personal Computer)

[BE MELSOFT Series GX Works2 C:\Sequential Programsie-learning\Robot control - [[PRG]Write MAIN 194 Step]

! Project Edit Find/Replace Compile Wew ©Onlne Debug Diagnostics Tool Window Help -8 X

NERAlLe o REIER N LTI R Rl e Y AR NN~ A Y ER
el B R B o QU S T S L ISR e s e 1 L S M SRR B

=F7 sF& =aF7? aFS | =aFS zaF6 =aF7 zafFS | aFS cafS Ao Flo

: Navigation et 4¥] [PRG]Write MAIN 194 Step r B verify Result [PLC Verify]] 4 b -
PrDjE[t Setwciuled prod oty seting

[P . = Gy 2] - i

+ Parameter Prod line control s
Inteligent Function Module ' ! I g
V¥ Global Device Comment ',:,._. '
+- {5 Global Label
+ Pragram Setting
S5 pol [Al R lij] }
= E‘ﬁ Pragranm

=ik} MAIN ket

k] Program ',I o
é Local Label
[FE_Pool
(B Structured Data Tvpes
Local Device Comment

3 Device Memory S
Device Initial Yale

| {_'r 10 ;|
| User Library " Finish the online program verification.

| Connection Destination Click iy to proceed.

LR

Enalish Simple Q03UDE Hosk Station (16 ML

anm

'
Wl PLC_GX_Works2_Advanced ENG =t

G Final Test)

Now that you have completed all of the lessons of the PLC GX Works2 Advanced Course, you are
ready to take the final test. If you are unclear on any of the topics covered, please take this opportunity
to review those topics.

There are a total of 8 questions (8 items) in this Final Test.

You can take the final test as many times as you like.

How to score the test
After selecting the answer, make sure to click the Answer button. Your answer will be lost if you
proceed without clicking the Answer button. (Regarded as unanswered question.)

Score results
The number of correct answers, the number of questions, the percentage of correct answers, and the
pass/fail result will appear on the score page.

Correct Answers : 2
To pass the test, you have to
9 : :
e answer 60% of the questions
correct.
Percentage : 22%
| Proceed | | Review | | Retry |

+ Click the Proceed button to exit the test.
= Click the Review button to review the test. (Correct answer check)
+ Click the Retry button to retake the test again.

r -
Wl PLC_GX_Works2_Advanced ENG —T ﬁ

} Final Test 1)

Which of the following functions enables efficient programming by using repeatedly used ladder
blocks as sharable components? (Choose one.)

Inline structured text

Label
_ Function block

Answer | | Back |

r -
Wl PLC_GX_Works2_Advanced ENG —T ﬁ

> Final Test 2)

Which of the following functions can create easy-to-read programs by changing the device
names to names associated with their application? (Choose one.)

Device comment

Label
~ Note

Answer | | Back |

r -
Wl PLC_GX_Works2_Advanced ENG —T ﬁ

> Final Test 3)

Which of the following functions can create easy-to-read programs by providing information on
processing for each ladder block? (Choose one.)

Device comment

Line statement

~ Note

Answer | | Back |

& -
kil PLC_GX_Works2_Advanced_ENG =] o |

} Final Test 4)

Which of the following is the correct explanation for the “Verify with PLC” function? (Choose one.)

Compares the program being edited with a program recorded in the change history.

Compares the program being edited with a selected program saved to the PC.

_ Compares the program being edited with a program written to the PLC CPU.

Answer | | Back |

' I
W PLC_GX_Works2_Advanced ENG o

} Final Test 5)

Which of the following is the correct explanation for the “I/O System Setting” function? (Choose one.)

Simulates the operation of external /O eguipment on the personal computer during debugging.

Remotely controls the operation of external /O equipment from the personal computer duning debugging.

_ Simulates the operation of the PLC CPU on the personal computer during debugging.

Answer | | Back |

& -
kil PLC_GX_Works2_Advanced_ENG =] o |

} Final Test 6)

Which of the following is the correct explanation for the “Change history” function? (Choose one.)

Records the operation of GX Works2 step by step so that it can be freely restored later.

Records history information and backups of the project to enable venfication and restoration later.

Answer | | Back |

r -
Wl PLC_GX_Works2_Advanced ENG —T ﬁ

} Final Test 7)

Which of the following functions can be used during debugging to change only the device values
without modifying the program? (Choose one.)

Break execution
/O system setting

_ Executional conditioned device test

Answer | | Back |

r -
Wl PLC_GX_Works2_Advanced ENG —T ﬁ

} Final Test 8)

Suppose the project includes two programs, A and B, and you use the “label” function.
Which of the following types of labels can be accessed by program B? (Choose two.)

Global label
Local label of program A
Local label of program B

Answer | | Back |

'
Wl PLC_GX_Works2_Advanced ENG =

} Test Score)

You have completed the Final Test. You results area as follows.
To end the Final Test, proceed to the next page.

Comect answers : -
Total questions : 8
Percentage : i
Proceed ‘ ‘ Review l ‘ Retry |

You failed the test.

'
W PLC_GX_Works2_Advanced_ENG

)]

You have completed the PLC GX Works2 Advanced Course.

Thank you for taking this course.

We hope you enjoyed the lessons and the information you acquired in
this course will be useful in the future.

You can review the course as many times as you want.

Review | | Close

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54
	スライド番号 55
	スライド番号 56
	スライド番号 57
	スライド番号 58
	スライド番号 59
	スライド番号 60
	スライド番号 61
	スライド番号 62
	スライド番号 63
	スライド番号 64
	スライド番号 65
	スライド番号 66
	スライド番号 67
	スライド番号 68

