
Industrial Automation

331© 2004 IAS, Universität Stuttgart

IA

5.1 Definition

5.2 Organization tasks of a real-time operating system

5.3 Development of a mini-real-time operating system

5.4 Software system design of the mini real-time operating system

5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

Chapter 5: Real-Time Operating Systems

332© 2004 IAS, Universität Stuttgart

IA

– to know what an operating system is

– to be able to explain what is meant by resources

– to know the functions of an operating system

– to know what interrupts are

– to be able to explain how the memory management is working

– to know the development process of a mini-real-time operating system

– to understand the composition of a mini-real-time operating systems

– to know how the mini operating system is working

– to understand the extensions of the mini operating system

– to understand how the mini operating systems is working

– to get an overview of real-time operating systems

Chapter 5 - Learning targets

333© 2004 IAS, Universität Stuttgart

IA

5.1 Definition
5.2 Organization tasks of a real-time operating system

5.3 Development of a mini-real-time operating system

5.4 Software system design of the mini real-time operating system

5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

5.1 Definition

334© 2004 IAS, Universität Stuttgart

IA

Definition DIN 44300:
Operating systems are programs of a digital computer system that
together with the characteristics of the computer hardware form the
basis of the possible operating modes of the digital computer system
and especially control and supervise the handling of programs.

Operating system

– Systematically built up collection of control programs and tools

– Allocation of the existing resources to the competing computation
processes Scheduling

– Simplification of the operating and programming of the computer and
its attached devices for the user Driver

What is an operating system?

5.1 Definition

335© 2004 IAS, Universität Stuttgart

IA

– Realization of the hardware-dependent tasks

– In many cases enclosing from the producer of the computer
• efficient operating system requires exact knowledge on the

hardware structure
• often for entire computer lines
• amortization of the high development costs of an operating

system

– Size

– Integration of classical operating systems modules in form of
semiconductor chips

ð several kilo-bytes in micro computer
ð several mega-bytes in mainframe computer

Characteristic of operating systems

5.1 Definition

336© 2004 IAS, Universität Stuttgart

IA

– Objects necessary for the execution of the computer process and for
which allocation the computer process has to wait

– Device units
• Processors
• Memory
• Peripheral devices like printers

– System programs

Resources

5.1 Definition

337© 2004 IAS, Universität Stuttgart

IA

– Real-time - UNIX

• Compatible to UNIX-System V

• Used in process control systems

– Real-time - kernels

• UNIX-compatible micro-kernel with
Memory management,
Interrupt handling,
Scheduler,
Task management,
Interfaces on basis of TCP/IP

• Optimally adapted to requirements

• Well optimized code for different platforms

Categories of real-time operating systems (1)

5.1 Definition

338© 2004 IAS, Universität Stuttgart

IA

– Real-time operating system extensions

• Extension of MS-DOS-systems

• Library for the compliance with real time conditions

– Real-time operating systems

• Very efficient

• Flexibly configurable

• Oriented on UNIX

Categories of real-time operating systems (2)

Industrial Automation

339© 2004 IAS, Universität Stuttgart

IA

5.1 Definition

5.2 Organization tasks of a real-time operating system
5.3 Development of a mini-real-time operating system

5.4 Software system design of the mini real-time operating system

5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

5.2 Organization tasks of a real-time operating system

340© 2004 IAS, Universität Stuttgart

IA

Management of computer processes and resources in compliance with the
requirements for timeliness, concurrency and efficiency

Functions of the operating system

– Organization of the execution of the computation processes
(Scheduling)

– Organization of the interrupt handling

– Organization of the memory management

– Organization of the input/output

– Organization of the process in case of irregular operating states and
start-up/restart

Tasks of a real-time operating system

5.2 Organization tasks of a real-time operating system

341© 2004 IAS, Universität Stuttgart

IA

Automation Computer

Computation processes and resources

operating system
kernel

(micro kernel)

configurable
extension

Real-time operating system

computer hardware

Layer-architecture of an automation computer system

5.2 Organization tasks of a real-time operating system

342© 2004 IAS, Universität Stuttgart

IA

Automation Computer System

compu-
tation

process 1

Automation programs

compu-
tation

process 2

compu-
tation

process n

 resources 1 resources 2 resources n

 Resources

Management of
computer processes: register,

instruct,
planning,
terminate,
etc.

Management of
resources : announce,

create,
request,
occupy,
unlock,
etc.

Real-time operating system

5.2 Organization tasks of a real-time operating system

343© 2004 IAS, Universität Stuttgart

IA

Different kinds of computation processes
• Application processes
• System processes

Tasks of the computation process management
• Coordination of the execution of application and system

processes
• Parallel operation of as many resources as possible
• Work of queues for resources
• Synchronization of application system processes
• Avoidance, identification and elimination of deadlocks

ð central data logging
ð administration of storage media
ð zero process

Computation process management

5.2 Organization tasks of a real-time operating system

344© 2004 IAS, Universität Stuttgart

IA

– Interruption of the planned program sequence

– Start of a service routine

Planned program sequence: (without interrupts)

control program
t

Actual operational sequence: (with interrupts)

Control program Control program
t

ISR 1 Interrupt Service Routine

in
cr

ea
si

ng

pr
io

rit
y Interrupt 1

Interrupt handling

5.2 Organization tasks of a real-time operating system

345© 2004 IAS, Universität Stuttgart

IA

– Start of an interrupt service routine while simultaneously interrupting
the presently running computation process

– Prioritization of interrupts
– Hardware functions for the interrupt handling

(within the range of micro-seconds)

– Creation and processing of vectorized interrupts

Interrupt vector

Interrupt handling

5.2 Organization tasks of a real-time operating system

346© 2004 IAS, Universität Stuttgart

IA

The cost of memory space is proportional to the access speed

→ optimal usage necessary

– Cache memory (extremely fast semiconductor memory)
– Working memory
– Hard disc memory
– Floppy disc

Memory hierarchy levels

Tasks of the memory management

– Optimal usage of the “fast” memories
– Coordination of the access on a shared memory area
– Protection of the memory area of different computer processes

against false accesses
– Assignment of physical memory addresses for the logical names in

application programs

Why memory management?

5.2 Organization tasks of a real-time operating system

347© 2004 IAS, Universität Stuttgart

IA

– Hardware-independent level for the data management and the data
transport

– Hardware-dependent level, that takes into account all device specific
characteristics (driver programs)

Different kinds of input/output devices

Realization of the input/output control

Interface hardware-dependent/ hardware-independent

– Distinction in speed
– Distinction in data formats

Input/output control

5.2 Organization tasks of a real-time operating system

348© 2004 IAS, Universität Stuttgart

IA

– Faulty user inputs

• Non-valid inputs have to be rejected with error message

– Faulty application programs

• Guaranty, that a faulty application program does not
affect other programs

Classification of errors (1)

5.2 Organization tasks of a real-time operating system

349© 2004 IAS, Universität Stuttgart

IA

– Hardware faults and hardware failures

• Recognition of hardware faults and failures

• Reconfiguration without the faulty parts

• Shut-down sequences in case of power failures

– Deadlocks based on dynamic constellations

• Reliable avoidance of deadlocks is not possible

Identification of deadlocks and elimination through
withdrawal of operating resources

Classification of errors (2)

Industrial Automation

350© 2004 IAS, Universität Stuttgart

IA

5.1 Definition

5.2 Organization tasks of a real-time operating system

5.3 Development of a mini-real-time operating system
5.4 Software system design of the mini real-time operating system

5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

5.3 Development of a mini-real-time operating system

351© 2004 IAS, Universität Stuttgart

IA

– Presentation of the structure and the mode of operation of a real-time
operating system in strongly simplified form

– Gradual withdraw of the taken simplifications

Development process

– Clarification of the problem formulation, determination of the
requirements

– Technical solution concept

– Software system design

– Implementation

Objective

5.3 Development of a mini-real-time operating system

352© 2004 IAS, Universität Stuttgart

IA

clarification
and
determination
of
requirements

require-
ment

specifi-
cation

 technical
 solution
 concept

functional
specifi-
cation

preliminary
design of the
program
system

final design
of the
program
system

Software System Design

block
charts

flow
charts

implemen-
tation

programs
 in a pro-

gramming
language

Procedure of the development of the mini-real-time
operating system

5.3 Development of a mini-real-time operating system

353© 2004 IAS, Universität Stuttgart

IA

– Management of a maximum of n computer processes

• m Computer processes cyclic
• k Computer processes through interrupt signal

i.e. n = m + k

– One processor for the execution of operations

• No optimization of the processes through simultaneous
execution of computation operations and I/O operations

– Time signal for cyclic activities through internal clock generator

• Clock impulses at fixed intervals T (i.e.: T = 20ms)
• Different cycle times for the cyclic processes

Clarification and determination of the problem formulation
and the requirements

5.3 Development of a mini-real-time operating system

354© 2004 IAS, Universität Stuttgart

IA

å The sum of all computing times of the computation processes
is smaller that the interval T

• Assurance that all computation processes are finished
at the next clock pulse.

ç No tasks that are started by interrupt

Only cyclic tasks

é No resource management
• Input/output times are negligibly short

Simplifications that are withdrawn at a later point

5.3 Development of a mini-real-time operating system

355© 2004 IAS, Universität Stuttgart

IA

Asynchronous programming method
– Asynchronous instruction of the individual computer processes
– No fixed sequence of tasks
– Conflict strategy according to priority numbers

Sub-solution
– Creation of cycle time

• Derivation of the different cyclic times of the tasks from the
clock impulse

– State management of the computer processes
• Instruction of the tasks at the corresponding cyclic times and

defined termination
– Start of the computation processes

• Start of the task, which turn it is

Design of a solution concept

5.3 Development of a mini-real-time operating system

356© 2004 IAS, Universität Stuttgart

IA

creation of the
cycle times
T1, T2, ..., Tm

Sub-solution 1: cycle time
formation

instruction of the
computer
processes at the
times T1, ..., Tm,
and ending of the
instruction

Sub-
solution:2

state management
of the computation
processes

start of the
instructed
computer
processes
according to
priorities

Sub-solution 3: start
of the computation processes

Solution concept of the mini operating system

5.3 Development of a mini-real-time operating system

357© 2004 IAS, Universität Stuttgart

IA

Task:

Formation of the cohesion between the cycle times
Ti (i = 1,2,...,m) and the interval T

Assumption: Ti >> T

⇒ Ti = ai ⋅ T

ai Integral cycle time factors (i=1,2,...,m)

Interval variable Zi (i=1,2,...,m)

Arrival of the clock impulse reduces Zi by 1

Zi = 0: Cyclic time Ti is over

Reset of Zi on initial value ai

Creation of cycle time

5.3 Development of a mini-real-time operating system

358© 2004 IAS, Universität Stuttgart

IA

at each arrival of clock impulse in interval T:
decremention of the variable z i (decrement by 1), i.e. formation of :

z1 := z1 - 1
z2 := z2 - 1

zm := zm-1

clock
impulse

definition of (dimensionless) interval variables z 1, z2, ..., zm with the
initial values

z1 = a1
z2 = a2

zm = am

introduction of dimensionless, integral cycle time factors

T1 = a1 T a1 =

T2 = a2 T a2 =

Tm = am T am =
 Tm
T

 T2
T

 Tm
T

Sub-solution 1:
creation of
cycle time

5.3 Development of a mini-real-time operating system

359© 2004 IAS, Universität Stuttgart

IA

as soon as a variable turns zi = 0 the corresponding cycle time
Ti is reached. Therefore this result is transfered to the solution
component 2, that is in charge of instructing the process i (putting
the state into "ready").

to/ from
sub-
solution 2

Reset of the corresponding interval variables to the initial value
zi := ai, Continuation with solution component 2.

to sub-
solution 2

5.3 Development of a mini-real-time operating system

360© 2004 IAS, Universität Stuttgart

IA

Task:
– Management of the states of the computation processes

• dormant

• ready

• blocked

• running

– Bookkeeping on the respective states of each process

– Execution of state transitions

State management of the computation processes

5.3 Development of a mini-real-time operating system

361© 2004 IAS, Universität Stuttgart

IA

In case of arrival of a message
that the cycle time Ti is over:
Instruction of the computer
processes in question
(putting into the state "ready").

Determine the computer
process in state "ready" with
the highest priority from the list

Message to solution
component 3 (start of the
concerning task)

List of the current
states of the
computer processes

After the execution of a computer process:
Write down the state "dormant" in the state list

End message
from
subsolution 3

Start message
to
subsolution 3

From sub-
solution 1,
if all
interval
variables
are
processed

Back to
sub-
solution 1

From sub-
solution 1

Sub-solution 2:
State
management
of the
computation
processes

5.3 Development of a mini-real-time operating system

362© 2004 IAS, Universität Stuttgart

IA

Task:

– Determination of the start address

– Starting of the computation processes

– Supervise the termination of the computer process

Start of the computation processes

5.3 Development of a mini-real-time operating system

363© 2004 IAS, Universität Stuttgart

IA

After the notification from sub-solution 2:
Determine start address of the computation process in
question

Start
message from
sub-solution
 2

Starting of the computation process in question
(sub-program - jump to start address)

Notification of sub-component 2 that the computer process
is finished.

End message
to sub-solution
2

Sub-solution 3: Starting of the computation processes

364© 2004 IAS, Universität Stuttgart

IA

5.1 Definition

5.2 Organization tasks of a real-time operating system

5.3 Development of a mini-real-time operating system

5.4 Software system design of the mini real-time operating system
5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

5.4 Software system design of the mini real-time operating system

365© 2004 IAS, Universität Stuttgart

IA

Principle of the stepwise refinement

Dissection of the mini operating system in program routines,
that are individually refined as well.

Software system design based on strongly simplified
formulation

5.4 Software system design of the mini real-time operating system

366© 2004 IAS, Universität Stuttgart

IA

– Sub-program TIME ADMINISTRATION
• for the formation of the different cyclic times

– Sub-program TASK ADMINISTRATION
• for the administration of the computer processes

– Sub-program PROCESSOR ADMINISTRATION
• allocation of the resource “processor”
• starting of the computer processes

MINI REAL TIME
OPERATING

SYSTEM
Level 1

TASK
ADMINISTRATION

TIME
ADMINISTRATION

PROCESS
ADMINISTRATION Level 2

Dissection of the mini-real-time operating system program

5.4 Software system design of the mini real-time operating system

367© 2004 IAS, Universität Stuttgart

IA

CLOCK
IMPULSE

TIME
ADMINISTRATION

TASK
ADMINISTRATION

PROCESSOR
ADMINISTRATION

MINI- REAL-TIME OPERATING SYSTEM

Start of a computer
process

End of a computer
process

Symbols

Kick-off (control flow)

Data transfer (data flow)

Program resp. program routine

List of data, e.g. single values (data)

Interaction of the sub-programs of the mini-real-time
operating system

5.4 Software system design of the mini real-time operating system

368© 2004 IAS, Universität Stuttgart

IA

– Time span variable Zi for cyclic time formation
List TIME COUNTER

z1

z2

z3

zm

m spaces

Filing of the time-span variables zi

List of variables

Lists necessary for the TIME ADMINISTRATION (1)

5.4 Software system design of the mini real-time operating system

369© 2004 IAS, Universität Stuttgart

IA

– Cyclic time Ti for each computer process
List CYCLE

a1

a2

a3

am

m spaces

Provision of the cyclic time factors ai:

= Ti/T
List of constants

Lists necessary for the TIME ADMINISTRATION (2)

5.4 Software system design of the mini real-time operating system

370© 2004 IAS, Universität Stuttgart

IA

TIME

CYCLE TIME
COUNTER

CLOCK
IMPULSE

Kick-off
TASK ADMINISTRATION

Block chart of the sub-program TIME ADMINISTRATION

5.4 Software system design of the mini real-time operating system

371© 2004 IAS, Universität Stuttgart

IA

ð Status and base address of the computer process list
ADMINISTRATION BLOCK

Structure of the list for the administration of computer processes
ADMINISTRATION BLOCK

Start address 1B1

B2

B3

B4

Start address 2

Start address 3

Start address 4

Start address mBm

m spaces

Status bits Bi
Bi = 0: ready
Bi = 1: dormant

Base address of the code
assigned to the computer
process i (i = 1, 2, ..., m)

Two-dimensional
field

List necessary for the TASK ADMINISTRATION and
PROCESSOR ADMINISTRATION

5.4 Software system design of the mini real-time operating system

372© 2004 IAS, Universität Stuttgart

IA

TASK
ADMINISTRATION LEVEL 2

SEARCHACTIVATION DEACTIVATION LEVEL 3

Division of the sub-program TASK ADMINISTRATION

5.4 Software system design of the mini real-time operating system

373© 2004 IAS, Universität Stuttgart

IA

ACTIVATION SEARCH

ADMINISTRATION
BLOCK

DEACTIVATION

End of the computer
process in question

from the PROCESSOR
ADMINISTRATION

Selection of the
start address by
the PROCESSOR
ADMINISTRATION

to the PROCESSOR
ADMINISTRATION

from/ to
TIME
ADMINIS-
TRATION

Block chart of the TASK ADMINISTRATION

5.4 Software system design of the mini real-time operating system

374© 2004 IAS, Universität Stuttgart

IA

ACTIVATION: Modification of the status bits into “ready”

DEACTIVATION: Modification of the status bits into “dormant”

SEARCH: Check if there´s a task in state “ready”

Organizing the list ADMINISTRATION BLOCK allows a simple prioritization.
Subdivision of PROCESSOR ADMINISTRATION is not necessary.

5.4 Software system design of the mini real-time operating system

375© 2004 IAS, Universität Stuttgart

IA

ADMINISTRATION
BLOCK

ACTIVATION SEARCH

DEACTIVATION

PR
O

C
ES

SO
R

 A
D

M
IN

IS
TR

A
TI

O
N

co
m

pu
te

r p
or

ce
ss

 c
od

e

TIME

TIME COUNTER

CLOCK
IMPULSE

TIME ADMINISTRATION TASK ADMINISTRATION

CYCLE

Overall block chart of the mini real time operating system

5.4 Software system design of the mini real-time operating system

376© 2004 IAS, Universität Stuttgart

IA

Flow chart TIME
ADMINISTRATION

TIME
ADMINISTRATION

l = 1

TIME COUNTER (I) =
TIME COUNTER (I) -1

TIME COUNTER (I)
= 0?

I = M?

l = I + 1
search

TIME COUNTER (I)
= CYCLE (I)

ACTIVATION

CLOCK
IMPULSE

yes

yes

no

no

Fine design in form of a flow chart

5.4 Software system design of the mini real-time operating system

377© 2004 IAS, Universität Stuttgart

IA

ACTIVATION

Inquiry if computer
process is available at
all

ACTIVATION (I)

Set STATUS BIT (I) IN
ADMINISTRATION
BLOCK (I) = 0

Reentry

ERROR
MESSAGE

yes

no

Address part from
ADMINISTRATION

BLOCK (I)
= 0?

= ready

Flow chart of the programs TASK ADMINISTRATION

5.4 Software system design of the mini real-time operating system

378© 2004 IAS, Universität Stuttgart

IA

SEARCH

I = 1

STATUS BIT (I) from
ADMINISTRATION

 BLOCK (I)
= 0?

I = M?

I = I + 1
PROCESSOR

ADMINISTRATION (I)

yes

yes

no

no

DEACTIVATION (I)

Set STATUS BIT (I)
in ADMINISTRATION
BLOCK (I) = 1

SEARCH

Deactivation

= dormant

Search

5.4 Software system design of the mini real-time operating system

379© 2004 IAS, Universität Stuttgart

IA

Flow chart of the PROCESSOR ADMINISTRATION

PROCESSOR
ADMINISTRATION (I)

Start computer
process over start
adress in
ADMINISTRATION
BLOCK (I),
i.e. invoke as sub-
program

DEACTIVATION (I)

5.4 Software system design of the mini real-time operating system

380© 2004 IAS, Universität Stuttgart

IA

Admission of longer computing times for the computer processes

é In case of the arrival of a clock impulse it might be necessary to
interrupt a (still) running computer process featuring a longer
execution time and lower priority, in order to start a computer process
with a higher priority.

é Program for the interruption administration

First extension of the system design

5.4 Software system design of the mini real-time operating system

381© 2004 IAS, Universität Stuttgart

IA

Task:
Rescue of the registers of the processor of a still running computer process.

– Program counter
– Accumulator
– Status register
– Working register

Sub-program INTERRUPTION ADMINISTRATION
(Administration program)

5.4 Software system design of the mini real-time operating system

382© 2004 IAS, Universität Stuttgart

IA

MINI-REAL-TIME OPERATING
SYSTEM

(Extension1)

INTERRUPT
ADMINISTRA-
TION

TIME
ADMINISTRA-
TION

TASK
ADMINISTRA-
TION

PROCESSOR
ADMINISTRA-
TION

Extended hierarchy chart after the admission of longer
computing times in computer processes

5.4 Software system design of the mini real-time operating system

383© 2004 IAS, Universität Stuttgart

IA

– Start address after an
interruption

– Register memory
location

Base address 1
Start adress (program counter contents)

Register contents 1
Register contents 2

B1

Base address 2
Start address (program counter contents)

Register contents 1
Register contents 2

B2

Base address m
Start address (program counter contents)

Register contents 1
Register contents 2

Bm

Register contents k

Register contents k

Register contents k

Task 1

Task 2

Task m

Extension of the list
ADMINISTRATION BLOCK

5.4 Software system design of the mini real-time operating system

384© 2004 IAS, Universität Stuttgart

IA

– Right before the start of a ready computer process the register with
the contents of the list of the ADMINISTRATION BLOCK has to be
loaded.

Extension of the sub-program DEACTIVATION

– After the computer process is finished its base address is loaded into
the cell START ADDRESS and the register contents in the
ADMINISTRATION BLOCK are to be initialized.

Extension of the sub-program PROCESSOR
ADMINISTRATION

5.4 Software system design of the mini real-time operating system

385© 2004 IAS, Universität Stuttgart

IA

First extension: Admission of longer computing times for computer processes

TIME
COUNTERCYCLE

TIME SEARCHACTIVA-
TION

ADMINIS
TRATION
BLOCK

DEACTI-
VATION

C
om

pu
te

r p
ro

ce
ss

 c
od

e

INTERRUPT
ADMINISTRATION

TIME
ADMINISTRATION

TASK
ADMINISTRATION

PROCESSOR
ADMINISTRATION

CLOCK
IMPULSE

Overall chart of the mini real time operating system

5.4 Software system design of the mini real-time operating system

386© 2004 IAS, Universität Stuttgart

IA

Having the possibility of alarm interrupts in mind

– Up to k computer processes, which activation is triggered by alarm
interrupts that are not predictable from the point of view of time.

Extension of the INTERRUPTION ADMINISTRATION

– register rescue
– in case of clock impulse interrupts triggering of TIME

ADMINISTRATION
– in case of alarm interrupts invoking of the ACTIVATION, in order to

put the corresponding response program in the state “ready”
– kick-off SEARCH

Second extension of the software system design

5.4 Software system design of the mini real-time operating system

387© 2004 IAS, Universität Stuttgart

IA

Second extension: Having the possibility of alarm interrupts in mind

TIME
COUNTERCYCLE

TIME SEARCHACTIVA-
TION

ADMINI-
STRATION
BLOCK

DEACTIV
ATION

C
om

pu
te

r p
ro

ce
ss

 c
od

e

INTERRUPT
ADMINISTRATION

TIME
ADMINISTRATION

TASK
ADMINISTRATION

PROCESSOR
ADMINISTRATION

CLOCK
IMPULSE
INTERRUPT

INTERRUPT1

INTERRUPT2

INTERRUPT Kex
te

rn
al

 In
te

rr
up

ts
Overall chart for the mini operating system

5.4 Software system design of the mini real-time operating system

388© 2004 IAS, Universität Stuttgart

IA

Operating resource administration for input/output devices
In/output operation are slower than

– analog to digital converter ca. 20 ms

Introduction of a administration program I/O-ADMINISTRATION

Task:

Organization of slow input/output operations
– Computer process is stopped.
– Processor is able to work on other computer processes.
– Finishing the input/output operations allows the continuation

of accompanying computer processes.

Third extension of the software system design

5.4 Software system design of the mini real-time operating system

389© 2004 IAS, Universität Stuttgart

IA

MINI-REAL-TIME
OPERATING SYSTEM
(Extension 3)

INTERRUPT
ADMINISTRA-
TION

IN/OUTPUT
ADMINISTRA-
TION

TIME
ADMINISTRA-
TION

TASK
ADMINISTRA-
TION

PROCESSOR
ADMINISTRA-
TION

Hierarchical chart of the mini operating system

5.4 Software system design of the mini real-time operating system

390© 2004 IAS, Universität Stuttgart

IA

– Operating system programs themselves are not interruptible.

– The multiple instruction of a computer process, i.e. new instruction
before the actual end of a computer process is impossible.

– A mutual instruction of computer processes is not possible.

– A synchronization of computer processes, i.e. through semaphore
operations, is not possible.

– No data communication between the computer processes, i.e. no
interchange of data, no common use of data.

– No dynamical modifications of the priorities of the computer processes
during the program execution.

– Computer processes are located in the working memory, background
memories are not available.

Abolition of the simplifications

Industrial Automation

391© 2004 IAS, Universität Stuttgart

IA

5.1 Definition

5.2 Organization tasks of a real-time operating system

5.3 Development of a mini-real-time operating system

5.4 Software system design of the mini real-time operating system

5.5 Examples for real-time operating systems

§ 5 Real-time operating systems

5.5 Examples for real-time operating systems

392© 2004 IAS, Universität Stuttgart

IA

Criteria of the selection of real time operating systems

– Development and target environment
– Modularity and kernel size
– Performance data

• Amount of tasks
• Priority levels
• Task switch times
• Interrupt latency time

– Adaptation to special target environments
– General characteristics

• Scheduling method
• Inter-task communication
• Network communication
• Design of user interface

Market survey

5.5 Examples for real-time operating systems

393© 2004 IAS, Universität Stuttgart

IA

Product ERCOS Lynx-OS OS/9 OSE Delta pSOS PXROS QNX VRTX32 VxWorks Windows CE

Company ETAS
GmbH

Lynx
Real-Time

System
inc.

Microware ENEA
DATA AB

ARS
Integrated
Systems

HighTec
EDV-

Systeme

QNX
Software
Systems

LTD

Microtec
Research

WindRiver Microsoft

Type Embedded RTOS, RT
Kernel,

Embedded

RT Kernel,
Embedded

RTOS, RT
Kernel,

Embedded

RT Kernel,
Embedded

RTOS, RT
Kernel,

Embedded

RTOS, RT
Kernel,

Embedded

RTOS, RT
Kernel,

Embedded

RTOS
Embedded

Target
architecture

8016x,
PowerPC

680x0,
80x86,

PowerPC,
88000,
i860,

MIPS,
SPARC,
RS6000

680x0,
80x86,

PowerPC,
CPU32

680x0,
PowerPC,
CPU32,

AMD29k

680x0,
80x86,
8016x,

PowerPC,
CPU32,

i960,
Hitachi

SH, MIPS

80x86,
8016x,

PowerPC

i386,i486,
Pentium,
80286(16

bit)

680x0,
80x86,

SPARC,
CPU32,

AMD29k,
i960

680x0,
80x86,

PowerPC,
CPU32,

i960,
MIPS,

SPARC,
AMD29k,
Hitachi SH

Pentium
80x86, i486

PowerPC
MIPS

Hitachi S4,
ARM

Host-
system

UNIX,
Win95,

NT

UNIX UNIX,
Windows

UNIX,
Windows,

NT

UNIX,
SUN,

Windows,
NT, OS/2

UNIX,
SUN,

Windows,
NT, OS/2

QNX UNIX,
SUN,

Windows

UNIX,
Win95,

NT

Windows CE
Win 95

NT

Language ANSI-C,
OLT

Specificati
on

Language

ANSI-C,
C++,

Pascal,
Ada,

Modula,
Fortran

ANSI-C,
C++

C, C++ ASM,
ANSI-C,

C++,
Pascal,

Ada

ANSI-C,
C++

Watcom
C, C++,
Inline
ASM

ASM,
ANSI-C,

C++

ANSI-C,
C++, Java,

Ada

Visual C++
Visual Basic
Visual J++

Data
system

no UNIX,
FAT, NFS,
Real-Time
Filesystem

FAT UNIX,
FAT

UNIX,
FAT, NFS,
Real-Time
Filesystem

UNIX,
FAT

UNIX,
FAT,

ISO9660

UNIX,
FAT

UNIX,
FAT

FAT

Selection of commercial real time operating systems

5.5 Examples for real-time operating systems

394© 2004 IAS, Universität Stuttgart

IA

Product ERCOS Lynx-OS OS/9 OSE Delta pSOS PXROS QNX VRTX32 VxWorks Windows
CE

Network TCP/IP,
NFS

TCP/IP,
OS/9-net,
NeWLink

TCP/IP,
PPP,

SNMP

TCP/IP,
Netware,
OSI 1-7,
SNMP
CMIP,
X.25

TCP/IP,
NFS

TCP/IP,
NFS,

SNMP,
Streams

TCP/IP,
Netware

TCP/IP,
NFS,

SNMP,
Streams

TCP/IP,
PPP bzw.

SLIP

Field bus CAN CAN,
PROFI-
BUS,

Interbus-S

 CAN CAN,
PROFI-

BUS

 CAN,
PROFI-

BUS, LON

Others ROM-able ROM-able,
Multiproces

sor, self-
hosted

ROM-able,
Multi-

processor

ROM-able,
Multi-

processor

ROM-able,
Multi-

processor,
fehlertolera

nt

ROM-able,
Multi-

processor

ROM-able,
Multi-

processor,
POSIX
1003

compliant

ROM-able ROM-able,
Multi-

processor,
POSIX
1003

compliant

ROM-able

Scheduling preemptive,
co-

operative,
priority

controlled

preemptive,
priority

controlled,
Round-
Robin

preemptive,
co-

operative,
priority

controlled,
Round-
Robin

preemptive, preemptive,
priority

controlled,
Round-
Robin

preemptive,
priority

controlled

preemptive,
priority

controlled,
Round-
Robin

preemptive,
priority

controlled,
Round-
Robin

preemptive,
priority

controlled,
Round-
Robin

preemptive,
priority

controlled

Task
switch
time

< 54 µs
8016x (20

MHz)

 4,7µs
Pentium

166,
11,1us

486DX4
(100MHz),

74

17 µs ≥ 100 µs

Chapter 5: Real-Time Operating Systems

395© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 5.2

Answer

Consider two different automation systems:

• an event-driven system (e.g. a control of a coffee machine)

• a time-driven system (e.g. a trajectory control of a robot)

For which type of system is the interrupt handling of an operating system
more important ?

In event-driven systems most of the processes are started by interrupt
signals.

In time-driven systems no interrupts are caused. The events are handled
during the next cycle.

Chapter 5: Real-Time Operating Systems

396© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 5.4

Answer

Scheduling methods for the allocation of the processor are very important
in real-time operating systems.

a) What is the purpose of those methods ?

b) In which module of the mini operating system presented in the lecture a
scheduling method is used?
How is it called ?

 a) These methods are used to determine the execution sequence of the
“runnable” tasks.

 b) In the module SEARCH a scheduling method is used. It is the method of
fixed priorities in which running tasks can be interrupted (preemptive
scheduling).

