
241© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation Tasks

4.4 Synchronization of tasks

4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

Chapter 4: Real-Time Programming

242© 2004 IAS, Universität Stuttgart

IA

– to know what is meant by real-time programming

– to know the requirements of real-time programming

– to be able to differ between hard and soft real-time

– to understand what is meant by synchronous programming

– to understand the asynchronous programming

– to be able to explain what tasks are

– to know how time synchronization can be done

– to be able to use semaphores

– to know what scheduling methods are

– to be able to use the different scheduling methods

– to know what a schedulability test is

Chapter 4 - Learning targets

243© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation tasks

4.4 Synchronization of tasks

4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

4.1 Problem definition

244© 2004 IAS, Universität Stuttgart

IA

Non-real-time computing

– Correctness of the result

Not too soon, not too late

Real-time computing

– Correctness of the result

– Timeliness of the result

What is real-time programming?

4.1 Problem definition

245© 2004 IAS, Universität Stuttgart

IA

Data
Processing

Input data Output data

Data
Processing

Input data Output data

REAL-TIME Computing :

Time
Time Time

NON-REAL-TIME Computing :

4.1 Problem definition

246© 2004 IAS, Universität Stuttgart

IA

Creation of programs in such a way that the time requirements on the
compilation of input data, on the processing and on the delivery of output data
are fulfilled.

time requirements

Time requirements are dependent on the processes in the technical system

coordination with the technical process

Real-time : according to the real-time sequences, no time expansion,
no time compression

Different kinds of requirements on the time behavior of the data processing
– Requirements for timeliness

– Requirements for concurrency

Real-Time Programming

4.1 Problem definition

247© 2004 IAS, Universität Stuttgart

IA

Automation
system

Technical
process

Automation
system

Technical
process

Time dependent
output data

Time dependent
input data

malfunction due to too early/
too late arriving sensor/actuator
values

Example:

Interaction technical process and automation system

4.1 Problem definition

248© 2004 IAS, Universität Stuttgart

IA

data-driven system event/time driven system

complex data structure simple data structure

great amount of input data small amount of input data

I/O-intensive computation-intensive

Information systems Real-time systems

machine-independent machine-dependent

Differences between information and real-time systems

4.1 Problem definition

249© 2004 IAS, Universität Stuttgart

IA

Reactive systems

Real-time systems that react to the input signals of the technical process and
deliver output signals to influence the technical process

Example: Automation systems

Embedded systems

Integration of the automation system in the technical process physically and
logically.

Examples: electric razor, mobile telephone, washing machine,
power drill

Important terms (1)

4.1 Problem definition

250© 2004 IAS, Universität Stuttgart

IA

Hard real-time systems

Strict deadlines must not be missed in any case
Examples: DDC- control in airplanes, motor control in automobiles

Soft real-time system

A violation of deadlines can be tolerated
Utility

hard real-time system

soft
real-time system

Time

Deadline

Important terms (2)

4.1 Problem definition

251© 2004 IAS, Universität Stuttgart

IA

– timely compilation of input data

– timely data processing

– timely delivery of output data

Time requirements regarding timeliness

– Absolute time requirements
e.g..: 11:45 signal for departure

– Relative time requirements
e.g..: Turn off signal 10 seconds after a measured value

exceeds its threshold

Requirements for timeliness

4.1 Problem definition

252© 2004 IAS, Universität Stuttgart

IA

Execution of a function at fixed times t1, t2, t3 , t4

t1 t2 t3 t4
t

1
0

Execution of a function within a tolerance time range assigned to each time tn

t1 t2

tolerance range

t

1
0

Classification of time requirements (1)

4.1 Problem definition

253© 2004 IAS, Universität Stuttgart

IA

Execution of a function within an interval up to a latest time t1

t1
t

1
0

Execution of a function within an interval starting from an earliest time t1

t1
t

1
0

Classification of time requirements (2)

4.1 Problem definition

254© 2004 IAS, Universität Stuttgart

IA

Absolute time
requirements

Relative time
requirements

Execution of a function at
a fixed time

Recording of test values Analysis of substances
in chemistry

Execution of a function
within a tolerance time
range

Recording of controlled
variables

Measured value
supervision on sliding
boundaries

Execution of a function
within an interval up to a
latest time

Recording of data
telegrams

Recording of cargo
indicator labels

Execution of a function
within an interval starting
from an earliest time

Sequence control in
batch processes

Recording of signals
of a light barrier

Typical examples of applications with time requirements

4.1 Problem definition

255© 2004 IAS, Universität Stuttgart

IA

Processes in the “real world” take place simultaneously

è Real-time systems have to react to that simultaneously

è Several computation tasks have to be executed

simultaneously

Examples:

– Reaction to simultaneous trips of several trains

– Processing of several simultaneously occurring measurements in
heating systems

– Control motor and ABS system simultaneously

Requirements for concurrency

4.1 Problem definition

256© 2004 IAS, Universität Stuttgart

IA

– Each computation task is processed on a separate computer

– One computer for all data processing tasks

quasi parallel

Prerequisites:

Processes in environment are slow in comparison to
the computation of the programs on the computer

real parallelism

Realization of concurrency

4.1 Problem definition

257© 2004 IAS, Universität Stuttgart

IA

Parallel and quasi- parallel sequences are generally not predictable; time

shifts can lead to different execution sequences.

– the time behavior is not deterministic

– no guaranty of the safety of automation systems

Determination = predictability of the system behavior

Requirements for determinism

4.1 Problem definition

258© 2004 IAS, Universität Stuttgart

IA

A real-time system is called deterministic if for each possible state and for
each set of input information there is a defined set of output information and a
defined following state

Prerequisites: a finite set of system states

Timely deterministic system

The response times for all output information are known

In a deterministic system it is guaranteed that the system can react at every

time. In a timely deterministic system it is additionally guaranteed at which

time the reaction will have taken place.

Deterministic real-time system

4.1 Problem definition

259© 2004 IAS, Universität Stuttgart

IA

– Input data from input mediums
• Keyboard
• Light pen
• Mouse

– Waiting for reply, i.e. output of results on an output medium
• Screen
• Printer

Examples of dialog systems
– Seat reservation systems of airline companies
– Account management in banks
– Storekeeping systems

Timeliness in dialog systems Permitted response time within the
range of seconds

Dialog systems

4.1 Problem definition

260© 2004 IAS, Universität Stuttgart

IA

Time reaction depends on the processes in the technical system

Timeliness in automation systems

Permitted response time within the range of milliseconds /microseconds

Methods for real time programming are similar for

– Automation systems
– Dialog systems

Automation systems

261© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods
4.3 Computation tasks

4.4 Synchronization of tasks

4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

4.2 Real-time programming methods

262© 2004 IAS, Universität Stuttgart

IA

– Synchronous programming:
Planning of the time sequence of the execution of programs

– Asynchronous programming (parallel programming):
Organization of the time sequence during the execution of the
programs.

planned economy

market economy

Different methods

4.2 Real-time programming methods

263© 2004 IAS, Universität Stuttgart

IA

e.g.: Dentist's office as real-time system (chalkboard writing)

4.2 Real-time programming methods

264© 2004 IAS, Universität Stuttgart

IA

Synchronous programming:
Planning of the time behavior of subprograms that have to be executed
cyclically, before their actual execution

– Synchronization of the cyclical subprograms with a time grid

– Time grid generated by a real-time clock, interrupting signal

for the call of subprograms
Time triggered

– Strictly predefined sequence of the execution of

subprograms

Synchronous programming method

4.2 Real-time programming methods

265© 2004 IAS, Universität Stuttgart

IA

controlled system 1
"heating circuit flat"

controlled system 2
"heating circuit office"

controlled system 3
"boiler"

process-signal-in/output

analog-output analog-input

real-time
clock

automation
computer

operating
terminal

room temperature
flat
y1 (t)

room
temperature
office
y2 (t)

preheating-
temperature
y3 (t)

u1 (t)

u2 (t)

u3 (t)

Example: heating system

4.2 Real-time programming methods

266© 2004 IAS, Universität Stuttgart

IA

– Design and calculation of the control algorithms and

control parameters

– Determination of the sampling time for the control circuits

T = real-time clock - cycle time

Ti = sampling time for control circuit i

T1 = T

T2 = 2T

T3 = 5T

PlanningTechnical (control engineering) conception

4.2 Real-time programming methods

267© 2004 IAS, Universität Stuttgart

IA

a subprogram for each control circuit

Temperature control for
subsystem “heating circuit: flat“

CONTROL 1 T1 = T

Temperature control for
subsystem “heating circuit: office“ CONTROL 2 T2 = 2T

Subprogram Identifier
(name)

Sampling time
(cycle time)

Temperature control for
subsystem “heating circuit: boiler“ CONTROL 3 T3 = 5T

Assignment of the identifiers and sampling times to the
subprograms (control programs)

4.2 Real-time programming methods

268© 2004 IAS, Universität Stuttgart

IA

Start

invoke all T1 = T
CONTROL1

invoke all T2 = 2T
CONTROL2

invoke all T3 = 5T
CONTROL3

Wait loop

Interrupt signals

from the real-time clock
with the cicle time T

Preliminary design with synchronous programming

4.2 Real-time programming methods

269© 2004 IAS, Universität Stuttgart

IA

START

Definition of the counter variables
Z2 and Z3

Z2 := 1
Z3 := 1

CONTROL1

Wait loop

In time intervals T
successively appearing
interrupt signals
cause start at this point

initialize Z2 and Z3

Z2=2
?

CONTROL2

Z2 := 1

CONTROL3

Z3 := 1

Z3=5
?

 Z3 := Z3 + 1

 Z2 := Z2 + 1

no

no

yes

yes

Final design of the control program according to the
synchronous programming method

4.2 Real-time programming methods

270© 2004 IAS, Universität Stuttgart

IA

Assumption: - Computation time for subprograms is identical

- Sum of computation times of the three subprograms

is smaller than cycle time

0 1 2 3 4 5 6 7 8 9 10
t/T

T

ca. 5T

2T

CONTROL3

CONTROL2

CONTROL1

Control program

Interrupt signal of the real-time clock

Time sequence of the synchronous programming method

4.2 Real-time programming methods

271© 2004 IAS, Universität Stuttgart

IA

– Synchronous programming is good for real-time systems with cyclic
program execution

– Requirement for timeliness is approximately fulfilled

slight shifts

– Requirements for concurrency is fulfilled, if cycle time T is small
compared to the time constants in the technical process

predictable behavior

– Synchronous programming is not suitable for the reaction on timely
non-predictable (asynchronous) events

• Increase of computation time through constant polling

• Delay of the reaction

Characteristics of the synchronous programming method (1)

4.2 Real-time programming methods

272© 2004 IAS, Universität Stuttgart

IA

Disadvantages of synchronous programming :

Modification of the requirements specification causes modification of the
program structure

e.g.: PLC-programming

– Normally deterministic behavior

– No complex organization program

– A bit more expensive in its planning (development)

Characteristics of the synchronous programming method (2)

4.2 Real-time programming methods

273© 2004 IAS, Universität Stuttgart

IA

Organization program (real-time operating system) controls the timely
execution of subprograms at run-time

– Execution of subprograms, when time requirements are fulfilled

– Simultaneous execution is sequentialized according to a
certain strategy

• Assignment of priority numbers
• The priority is the higher, the lower the priority number is

Asynchronous programming method
(parallel programming)

4.2 Real-time programming methods

274© 2004 IAS, Universität Stuttgart

IA

synchronous
(cyclic)

Controlled
system

1

Controlled
system

2

Controlled
system

3

Analog-Output Analog-Input Digital
Output

Digital
Input

Warning
lamp

B
ur

ne
r f

ai
lu

re
 s

ig
na

l

Process unit

Automation
computer
system

Real-
time
clock

Operating terminal

Printer

u1 (t)

u2(t)

u3 (t)

y1 (t)

y2 (t)

y3 (t)

asynchronous
(stochastic)

Example: heating system

4.2 Real-time programming methods

275© 2004 IAS, Universität Stuttgart

IA

Reaction
on burner failure
with alarm
message

ALARM

– 1 highest

Temperature
control unit for
heating circuit 1

CONTROL 1
T1 = T 2 second

highest

Temperature
control unit for
heating circuit 2

CONTROL 2
T2 = 2T 3 third

highest

Subprogram Name Sampling
time

Priority
number

Priority

Temperature
control unit for
heating circuit 1

CONTROL 3
T3 = 5T 4

lowest

Assignment of indicators, sampling times and priority

4.2 Real-time programming methods

276© 2004 IAS, Universität Stuttgart

IA

CONTROL3
(Priority 4)

CONTROL2
(Priority3)

CONTROL1
(Priority2)
ALARM
(Priority1)

Desired course

T

real-time clock

B
ur

ne
r

fa
ilu

re
si

gn
al

s

t

Actual course

CONTROL3

CONTROL2

CONTROL1

ALARM
Operating
system

0 T 2T 3T 4T 5T 6T 7T
t

T3(1)

T2(4)T2(3)T2(2)T2(1)

T1(1) T1(2) T1(4)T1(3)

a)

b)

Time sequence of the four subprograms

4.2 Real-time programming methods

277© 2004 IAS, Universität Stuttgart

IA

– Requirements for timeliness only approximately fulfilled
Bad for low priority subprograms

– Time requirements are fulfilled the better the higher the priority of the

according subprogram

– The succession of the subprograms is not deterministic, but occurs
dynamically

– At the program development it cannot be indicated in advance which

of the subprograms will run at which point of time

• simple development
• complexity in the administration program
• program sequence is not transparent

– Actual time sequence can shift away from the desired time sequence

Subprograms can pass each other mutually

Characteristics of the asynchronous programming method

4.2 Real-time programming methods

278© 2004 IAS, Universität Stuttgart

IA

Asynchronous programming

– all activities as sequences of events
• activation of tasks
• transmission of messages

– support through real-time operating systems
– non-deterministic behavior
– flexible regarding modifications

Time-driven architectures Synchronous programming

– periodical execution of all tasks and communication actions
– sampling of external variable at determined times
– low flexibility in case of modifications
– easy to analyze

PLC-systems are time-driven real-time systems

Event-driven architectures

279© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation tasks
4.4 Synchronization of tasks

4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

4.3 Computation tasks

280© 2004 IAS, Universität Stuttgart

IA

– Program (sequence of commands)

– Execution of the program (a single execution of command sequence)

– Task

Invocation of subprograms

– Execution of the invoking program is interrupted

– Execution of the subprogram

– Continuation of the invoking program

Invocation of a task

– Simultaneous execution of the invoking program and of the invoked
task

Distinction

4.3 Computation tasks

281© 2004 IAS, Universität Stuttgart

IA

a procedure of the execution of a sequential program controlled by a real time
operating system

Introduction of the term computation task

– Task starts with entry in a list of the real-time operating system and

ends with the deletion from that list

– Task does not exist only during the execution of the commands,

but also during planned and forced waiting times

Task

4.3 Computation tasks

282© 2004 IAS, Universität Stuttgart

IA

Owner of resources Cannot own resources besides the
processor’s, accesses all resources
of the task, to which it belongs

Own adress space Adress space of the task, to which
it belongs

Common address space

Contains one or several threads Element of a task

Task Thread

Communication beyond the
task boundaries, preferred
via messages

Communication between the threads,
preferred via shared data

Differences between task and thread

4.3 Computation tasks

283© 2004 IAS, Universität Stuttgart

IA

– State “running”

• the subprogram is processed

– State “runnable” or “ready”

• all time conditions for the process are fulfilled

• what is missing is the start from the operating system
i.e. the execution

– State “dormant”

• task is not ready because time conditions or other conditions are not
fulfilled

– State “suspended”

• task is waiting for the occurrence of an event

• as soon as event occurs transition from state “suspended” to “ready”

4 basic states

4.3 Computation tasks

284© 2004 IAS, Universität Stuttgart

IA

"suspen-
ded""runnable"

"running"

"dormant"

Deletion of taskDeclarationof the task

planning

Planning of tasks

– Invocation of a task cyclically
or at certain times

– “Planning” is the transition
from the state “dormant” into
the state “runnable”

State diagram of a task

4.3 Computation tasks

285© 2004 IAS, Universität Stuttgart

IA

runnable
(ready)

dormant
0 T 2T 3T 4T 5T 6T 7T

The task
Control 3
is:

blocked

running
(active)

Course of the task “Control 3”
in the asynchronous programming method

4.3 Computation tasks

286© 2004 IAS, Universität Stuttgart

IA

– static priority assignment

– dynamic priority assignment (use of deadlines)

A: Arrival time
R: Request time
S: Start time
C: Completion time
D: Deadline
E: Execution time
P: Period time
L: Laxity
r: Remaining flow time
f: Flow time

Time parameters of a task :

Assignment of priorities for tasks

4.3 Computation tasks

287© 2004 IAS, Universität Stuttgart

IA

execution time E(t)

period time P

laxity L

flow time f(t) remaining flow time r(t)

time of viewing

A R S C D

Eold (t) Enew(t)

states of a task

"running"

„suspended"

„ready"

"dormant"

t

Appearance of the time parameters of a task

4.3 Computation tasks

288© 2004 IAS, Universität Stuttgart

IA

A <= R <= S <= C - E <= D - E

Execution time (computing time)

E(t) = Eold (t) + Enew (t)

Eold (t): present execution time at time of viewing

Enew (t): remaining execution time

Laxity

for the execution of a task
L = D - S - E

Corrrelation between the time parameters of a task

289© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation tasks

4.4 Synchronization of tasks
4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

4.4 Synchronization of tasks

290© 2004 IAS, Universität Stuttgart

IA

Actions = Threads

– Two actions within a task are called parallel if they can run
simultaneously

– Two actions are called sequential if they are arranged in a certain
sequential order

– Two actions of two different tasks are called concurrent if they can
run simultaneously (outer parallelism)

– Two actions of a task are called simultaneous, if they can be run at
the same time

Classification of the actions of a task

4.4 Synchronization of tasks

291© 2004 IAS, Universität Stuttgart

IA

Synchronicity between tasks and the technical process

Dependencies between tasks

– Logical dependency because of the technical process

e.g.: The desired values for the control have to be defined at least once
before they can be used

– Dependencies through the use of shared resources

Requirement on the execution of tasks

4.4 Synchronization of tasks

292© 2004 IAS, Universität Stuttgart

IA

the dependencies of tasks
due to shared resources

Shared resources:
– protocol printer
– analog-input

possibility of
deadlock!

Task
PROCESS SUPERVISION

Use driver
program for

protocol printer

Use analog-
input

Output error
message on

protocol printer

Input and
monitor process

variables

Task
MEASUREMENTS

Use analog-
input

Input and
conversion of

measurements

Use of driver
program for

prostocol printer

Print-
measurements

and time

Use analog-
input

Input and
conversion of

measurements

Use of driver
program for

printer protocol

Output error
message on

protocol printer

Use driver
program for

protocol printer

Use analog-
input

Example

4.4 Synchronization of tasks

293© 2004 IAS, Universität Stuttgart

IA

è Time coordination of the tasks
= synchronization of tasks

= limitation of the free parallel execution

Permanent deadlock (livelock, starvation)
A conspiracy of tasks block a task

The synchronization of tasks is equivalent to the
synchronization of their actions.

Deadlock:
Two or more tasks block themselves mutually

Problems of dependency

4.4 Synchronization of tasks

294© 2004 IAS, Universität Stuttgart

IA

Road crossing without traffic lights.
Traffic rule is “right before left“.

Example for a deadlock

4.4 Synchronization of tasks

295© 2004 IAS, Universität Stuttgart

IA

- every philosopher needs 2 chopsticks to eat

- no chopstick can be reserved

Example for a livelock: “ The Dining Philosophers”

4.4 Synchronization of tasks

296© 2004 IAS, Universität Stuttgart

IA

Logical synchronization
(task oriented or process oriented synchronization)

– Adaptation of the sequence of actions of a task to the
sequence of operations in the technical process.

– Synchronization means
• Fulfillment of requirements regarding the sequence of

actions
• Consideration of given times resp. intervals
• Reaction to the interrupt message from the technical

process

Resource-oriented synchronization
– Fulfillment of requirements regarding the use of shared

resources

Main forms of synchronization

4.4 Synchronization of tasks

297© 2004 IAS, Universität Stuttgart

IA

– Semaphore
– Critical regions
– Rendezvous concept

Basic idea of all synchronization methods

– Task has to wait until a certain signal or event occurs

– Use of waiting conditions at critical places

Synchronization methods

4.4 Synchronization of tasks

298© 2004 IAS, Universität Stuttgart

IA

V(Si): Operation V (Si) increases the value of the semaphore
variable Si by 1

P(Si): Operation P(Si) determines the value of Si

- if value of Si > 0
decrease Si by 1

- if Si = 0 it has to be waited,
until Si > 0

indivisible !

Synchronization of tasks through signals (Dijkstra)

Semaphore variable: positive, integer value

semaphore operations: V(S) und P(S)

Semaphore concept

4.4 Synchronization of tasks

299© 2004 IAS, Universität Stuttgart

IA

P(S1)P(S1)

V(S1)V(S1)

track magnettrack magnet

signal
S1

track magnettrack magnet

train A

tra
in

 A

tra
in

 B
train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

operation

synchronization
position

operation

variable
10

Example 1: Railroad traffic with single-track route

4.4 Synchronization of tasks

300© 2004 IAS, Universität Stuttgart

IA

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

01

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

00

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

00

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

10

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

00

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

00

P(S2)P(S1)

V(S1)V(S2)

Track magnetTrack magnet

Signal
S2

Signal
S1

Track magnetTrack magnet

Train A

Tr
ain

 A

Tr
ai

n
B
Train B

D
ire

ct
io

n
of

 th
e

tr
ai

ns

01 with
ordered sequence

Example 2: Railroad traffic with single-track route

4.4 Synchronization of tasks

301© 2004 IAS, Universität Stuttgart

IA

P (S1)

V(S2)
P (S2)

V(S1)

P (S1)

V(S2)
P (S2)

Ta
sk

 B

Ta
sk

 A

S2 = 0

S2 = 0

S1 = 1

S1 = 0

S2 = 1

S1 = 0

S2 = 1

t t

S1 = 1 S2 = 0

logical synchronization

operations on two tasks,
that always run
alternately

Example:

302© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation tasks

4.4 Synchronization of tasks

4.5 Communication between tasks
4.6 Scheduling methods

§ 4 Real-time programming

4.5 Communication between tasks

303© 2004 IAS, Universität Stuttgart

IA

Synchronization =
Fulfillment of time related and logical conditions in the parallel run of tasks

Communication =
Exchange of data between parallel running tasks

Interrelation: Synchronization - Communication

Synchronization : Communication without information

Communication : Synchronization for information exchange

Definition

4.5 Communication between tasks

304© 2004 IAS, Universität Stuttgart

IA

– Shared memory (commonly used memory)

• common variable

• common complex data structure

– Sending of messages

• transmission of messages from a task to another (message
passing)

• especially in distributed systems

Possibilities of data communication

4.5 Communication between tasks

305© 2004 IAS, Universität Stuttgart

IA

– Synchronous communication

• Sending and receiving processes communicate
at a certain predefined position in the program flow

– Asynchronous communication

• Data are buffered

waiting through blocking

no waiting times

Different kinds of communication

306© 2004 IAS, Universität Stuttgart

IA

4.1 Problem definition

4.2 Real-time programming methods

4.3 Computation tasks

4.4 Synchronization of tasks

4.5 Communication between tasks

4.6 Scheduling methods

§ 4 Real-time programming

4.6 Scheduling methods

307© 2004 IAS, Universität Stuttgart

IA

– Tasks need resources
(processor, in/output device etc.)

– Number of resources is limited

– Tasks compete for resources

– The allocation of resources has to be managed

Example: Railroad tracks in station area

Scheduling problem

4.6 Scheduling methods

308© 2004 IAS, Universität Stuttgart

IA

Allocation of the processor to runnable tasks according to a predefined
algorithm (Scheduling-method)

1. Is there an executable schedule for a set of tasks?

2. Is there an algorithm that can find an executable schedule?

Example: Lecture- room- time- allocation

Problem:

Scheduling:

4.6 Scheduling methods

309© 2004 IAS, Universität Stuttgart

IA

– Static scheduling

• Planning of the execution sequence of the tasks is done before the
actual execution (dispatching table)

• Consideration of information on taskset, deadlines, execution
times, sequential relations, resources

• Dispatcher carries out the allocation according to dispatching table

• Runtime - overhead minimal

• Deterministic behavior

Inflexible in case of modifications

– Dynamic scheduling

• Organization of the execution sequence during the execution of
the tasks

• Considerable runtime - overhead

Flexible in case of modifications

Classification dependent on the time of the planning

4.6 Scheduling methods

310© 2004 IAS, Universität Stuttgart

IA

– Preemptive scheduling
• running task can be interrupted
• higher priority tasks replace lower priority tasks

cooperative scheduling

– Non-preemptive scheduling
• running task cannot be interrupted
• processor-deallocation by the task itself

Classification according to the kind of execution

4.6 Scheduling methods

311© 2004 IAS, Universität Stuttgart

IA

– FIFO scheduling (first-in-first-out)

– Scheduling with fixed (invariable) priorities

– Round-Robin-Method (Time slice method)

– Earliest-deadline-first method

– Rate monotonic scheduling

– Method of minimal laxity (least laxity)

Scheduling methods

4.6 Scheduling methods

312© 2004 IAS, Universität Stuttgart

IA

– Non-preemptive scheduling

– The processor is allocated to the task with the longest delayed planning

– Simple implementation

unsuitable for hard real time systems

The tasks are executed in the order in which they become runnable

A B C D
t

FIFO scheduling

4.6 Scheduling methods

313© 2004 IAS, Universität Stuttgart

IA

– Each task has a determined time slot in which the processor is

allocated to it

– Sequence is determined statically

– Execution of a task “step by step”

– Used in dialog systems (multi-tasking systems)

unsuitable for hard real-time systems

Round-Robin-Method (time slice method)

4.6 Scheduling methods

314© 2004 IAS, Universität Stuttgart

IA

Each time slice has 10ms and the tasks were arranged in the following
order: A-B-C-D.
Execution time of the tasks:
Task A: 25ms
Task B: 20ms
Task C: 30ms
Task D: 20ms

10 20 t/ms

DA B C ADA B C C

Example: Round-Robin method

4.6 Scheduling methods

315© 2004 IAS, Universität Stuttgart

IA

– Priorities are assigned statically

– The processor is allocated to the task with the highest priority

– Preemptive and non-preemptive strategy is possible

– Simple implementation

for hard real-time systems only suitable under certain conditions

Scheduling with fixed priorities

4.6 Scheduling methods

316© 2004 IAS, Universität Stuttgart

IA

Depending on the strategy one of the two tasks A or B is running as
long as it has the highest priority

* FIFO scheduling: A was the first runnable task

Task Priority
A 1 Highest

PriorityB 1
C 2
D 3
E 3

A* B C D E
t

Example: fixed priorities

4.6 Scheduling methods

317© 2004 IAS, Universität Stuttgart

IA

Method frequently used in real applications

– Special case of scheduling with fixed priorities of cyclic tasks

– The shorter the period, the higher the priority

– Task with the shortest period has the higher priority

– Preemptive strategy

Rate monotonic scheduling

4.6 Scheduling methods

318© 2004 IAS, Universität Stuttgart

IA

First scheduled call of all tasks at t = 0 ms.
Afterwards the tasks have to be repeated cyclically.

Task D was interrupted

Task Execution
time

Period Priority

A
B
C
D

10 ms
20 ms
10 ms
20 ms

40 ms
50 ms
80 ms

100 ms

1
2
3
4

t / ms0 10 20 30 40 50 60 70 80 90 100 110 120 130

A1 B1 C1 D1a D1bA2 A4A3B2 B3C2

Example: Rate-Monotonic scheduling

4.6 Scheduling methods

319© 2004 IAS, Universität Stuttgart

IA

– The processor is allocated to the task with the shortest
remaining flow time

– Preemptive method

– High computation effort for the scheduling

– Compliance with requirements on time is specially supported

Earliest-Deadline-First-method
(Minimal-remaining-flow-time-method)

4.6 Scheduling methods

320© 2004 IAS, Universität Stuttgart

IA

Reason: Deadline of B is earlier as the one of A
Deadline of E is earlier as the one of D
ð Preemption

Task Time Tmin Tmax

A 10 ms 0 ms 40 ms
B 10 ms 0 ms 30 ms
C 30 ms 30 ms 100 ms
D 40 ms 50 ms 200 ms
E 10 ms 70 ms 90 ms

tmax: latest time
= deadline

B A C D E D

10 20 30 40 50 60 70 80 90 100 110 120
t/ms

Execution sequence:

tmin: earliest time

Example

4.6 Scheduling methods

321© 2004 IAS, Universität Stuttgart

IA

– Processor is allocated to the task with the smallest laxity

– Consideration of deadlines and of the execution time

– Very expensive method

best suitable for hard real-time systems

Least laxity method

4.6 Scheduling methods

322© 2004 IAS, Universität Stuttgart

IA

A schedulability test is a mechanism to proof whenever a set of tasks can be

scheduled in such a manner that the deadlines are not missed.

Being a mathematical proof, it is important to differentiate between:

• necessary condition

• necessary and sufficient condition

Schedulability test

4.6 Scheduling methods

323© 2004 IAS, Universität Stuttgart

IA

Any given set of tasks (Deadline = Period) can be called by the preemptive

Earliest-Deadline-First method when:

1
1

≤∑
=

n

i i

i

T
C Where:

Ci : Execution time of task i
Ti : Period of task i
n: Number of tasks

Concerning the EDF method this test is necessary and sufficient.

For any scheduling method this is only a necessary condition.

Theorem of Liu and Layland (Part I)

4.6 Scheduling methods

324© 2004 IAS, Universität Stuttgart

IA

Theorem of Liu und Layland (Part II)

Any given set of tasks (Deadline = Period) can be called by the

Rate-Monotonic method when:

Sufficient test

693,02ln

779,0

828,0

0,1

,...2,1,12

*

*
3

*
2

*
1

1
*

1

==

=

=

=

=

−=≤

∞

=
∑

U
U
U
U

nnU
T
C n

n

n

i i

i

Where:
Ci : Execution time of task i
Ti : Period of task i
Un

*: Utilisation of processor with n tasks
n: Number of tasks

and:

i

i
i T

CU =

4.6 Scheduling methods

325© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 4.1

 Which kind of real-time systems are the following ones?

Answer

paper printing device
car electrical window control
TV electron beam control
telephone switching control
CNC milling head control
aircraft turbine engine control

hard real-time
system

soft real-time
system

X
X
X

X

X

X

If a deadline is missed in a hard real-time system, then this is equal to a
failure of the automation system. Often damage to property or to persons
can occur in such systems.

Chapter 4: Real-Time Programming

326© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 4.2

 Which of the following statements regarding to real-time programming do
you agree?

Answer

¨ In real-time programming only the timeline of an event is in center.

¨ Real-time means „as fast as possible“.

¨ In soft real-time systems timelines do not have to be fulfilled.

¨ The asynchronous programming method is more flexible regarding to outer
events than a syhchronous programming method.

¨ A synchronous programming requires cyclic programm flow.

¨ The synchronous programming method does not fulfill the requirement for
concurrency.

f

f
ü

f
ü

f

Chapter 4: Real-Time Programming

327© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 4.4

Answer

 a) Two tasks access the same temperature sensor in an automation
system.

 b) A control algorithm is divided into three tasks: „input of actual value“,
„calculation of control variable“ and „output of control variable“. These
tasks always have to be executed in this sequence.

 Which type of synchronization has to be used respectively ?
 How many semaphore variables are necessary in each case ?

 a) This is a resource-oriented synchronization. One semaphore variable is
required for each resource. (In this example: one)

 b) The second example is a logical synchronization. One semaphore
variable is required for each point of synchronization at a transition from
one task to the next one. (Three in this example)

Chapter 4: Real-Time Programming

328© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 4.6

Answer

 In the so called „shortest-job-first“-scheduling method, the task with the
shortest execution time is selected for processing at run-time. However,
running tasks cannot be interrupted by other tasks.

 Which type of scheduling method is this ?

The planning of the task sequence is done only at run-time of the system,
during the program execution. Furthermore, the tasks cannot be interrupted.

Consequently, we can classify this method as a dynamic, non-preemptive
scheduling method.

 Remark:

 The “shortest-job-first” method determines a schedule, that minimizes the
average flow-time.

Chapter 4: Real-Time Programming

329© 2004 IAS, Universität Stuttgart

IA

Crosswords to Chapter 4

Chapter 4: Real-Time Programming

330© 2004 IAS, Universität Stuttgart

IA

Crosswords to Chapter 4

Across
1 Term for activities that are ordered in a specific order. (10)
4 Set of all tasks controlled by a scheduler. (4,3)
6 Transition from the state "dormant" into the state "runnable" (8)
7 Synchronization construct (9)
9 Interruptible processor allocation. (10)
10 Execution of activities according to their arrival. (4)
11 A stalemate that occurs when two (or more) tasks are each waiting

resources held by each other. (8)
12 Allocation of processor resources to tasks ready to execute. (10)

Down
2 Organization of timely execution of subprograms at runtime. (12)
3 Situation in which a task can not realize its duty, even if it continues

to run. (8)
4 Procedure of the execution of a sequential program, controlled by a

real time operating system. (4)
5 Term for two activities of a task that could be executed at the same

time. (12)
8 Latest execution time point of a task. (8)

