
397© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC) (PLC)

6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

398© 2004 IAS, Universität Stuttgart

IA

– to know the modus operandi when doing process automation
programming

– to be able to differ programming languages referring to the language level

– to know the programming languages for PLC

– to program simple examples using PLC-languages

– to know the most important real-time concepts for programming
languages

– to know how real-time concepts are realized in Ada 95

– to be able to design a real-time program in Ada 95

– to be able to rank C/C++ referring to real-time aspects

– to know what the fundamentals of the portability of Java

– to understand the real-time extensions of Java

Chapter 6 - Learning targets

Chapter 6: Programming Languages for Process Automation

399© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms
6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)

6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

6.1 Basic Terms

400© 2004 IAS, Universität Stuttgart

IA

Procedures for program generation

Programmable Logic Controllers
– Textual programming languages
– Graphical programming languages

Micro controller
– Assembler
– Low machine-independent programming languages

PC and IPC
– Software package
– Universal real-time programming language

Process control system
– Functional module technology

6.1 Basic Terms

401© 2004 IAS, Universität Stuttgart

IA

Classification according to notation type
– textual programming languages Ada, C, PLC instruction list
– graphical programming languages PLC ladder diagram

Classification according to programming language paradigm
– procedural programming languages C, Ada 83
– functional programming languages LISP
– logical programming languages PROLOG
– object-oriented programming languages C++, Smalltalk, Ada 95

Classification according to language level
– high: focus on the understandability for the user
– low: focus on the hardware characteristics of a computer

Programming language types

6.1 Basic Terms

402© 2004 IAS, Universität Stuttgart

IA

Classification according to language level

Program generators

Application-specific
programming languages

Universal programming
languages

Macro assembler
languages

Assembler languages

Machine languages

Microprogramming
languages

Machine-
independent
programming languages

Machine-
oriented
programming languages

Machine
languages

La
ng

ua
ge

 le
ve

l

6.1 Basic Terms

403© 2004 IAS, Universität Stuttgart

IA

Microprogramming languages

– Sequence control realization for the execution of machine commands
• Permanently wired logic elements
• Microprograms

– Microprograms (firmware)
• Storage in fast random access memory

(RAM’s) or in read only memory (ROM’s)
• Not accessible for mask programming

– Machine languages
• Language elements:

Commands and data in form of bit patterns

• Combination of octal or hexadecimal numbers
• Difficult handling
• Not suitable for application programming

6.1 Basic Terms

404© 2004 IAS, Universität Stuttgart

IA

Assembler languages

Goals: Avoid the difficult handling of machine languages while keeping the
characteristics of machine commands

– Replacement of the octal/hexadecimal notation on the operation part
of the commands by symbolic, mnemonically convenient letter
abbreviations

– Introduction of a symbolic name instead of the numerical depiction of
the address part

– Non-ambiguous assignment of commands in the assembler
languages to commands in the machine languages

– Dependency on device-technical characteristics of the corresponding
computer

6.1 Basic Terms

405© 2004 IAS, Universität Stuttgart

IA

Macro assembler languages (macro languages)

– Further auxiliary means for simpler handling: macros

– Distinction
• Macro definition
• Macro call
• Macro expansion

– Setup of a macro definition
MACRO Macro name (P1, P2,, PN)

Macro body
Final mark

Macro call
Macro name (A1, A2, ..., AN)

– Non-ambiguous assignment of macro assembler commands to
commands of the machine language

– One macro command corresponds to several machine commands

Macro: Abbreviation for a certain instruction sequence

6.1 Basic Terms

406© 2004 IAS, Universität Stuttgart

IA

Example: macro threeaddressadd

Macro definition: MACRO Threeaddressadd (P1, P2, P3)
LOAD P1
ADD P2
STORE P3
END

Macro call: Threeaddressadd (A,B, SUM)

Macro expansion: ...
LOAD A
ADD B
STORE SUM
...

6.1 Basic Terms

407© 2004 IAS, Universität Stuttgart

IA

Difference between subprogram calls and macros

– A subprogram is only stored once but can be called and executed
several times

– Each time a macro is called it is expanded

Classification of macros

– Standard macros: predefined (fix)

– User macros: the user is able to define macros for instruction
sequences that are needed often

6.1 Basic Terms

408© 2004 IAS, Universität Stuttgart

IA

Universal programming languages

Universal = not focused on one specific application area

Universal low programming languages
– Purpose: Generation of system programs

• Compiler
• Operating systems
• Editors
• Driver programs

– Objective: 1. Utilization of the hardware characteristics
2. Portability

– Example: C

Universal higher programming languages
– Purpose : Generation of general/common programs
– Objective : 1. Simple formulation

2. Extensive compiler checks
3. Portability

– Example : Ada, Java, Smalltalk

System programming
languages

6.1 Basic Terms

409© 2004 IAS, Universität Stuttgart

IA

Application-specific languages

Difference to procedural languages:
– No description of the solution approach,

instead: description of the problem definition
– Limited to certain application areas:

e.g.: SFC Sequential Function Chart
LD Ladder Diagram
IL Instruction List
EXAPT For machine tool control
ATLAS For automatic device tester

Advantages/disadvantages:

Descriptive languages, non-procedural higher languages, very high
level languages

+ comfortable, application-specific mode of expression
- inflexibility

6.1 Basic Terms

410© 2004 IAS, Universität Stuttgart

IA

Program generator (fill-in-the-blanks-languages)

– Formulation method for programs

– User replies to questions in the form of menus on screen (user
configuration)

– Conversion of the answers in an executable program through the
program generator

– Advantage: no programming skills necessary

– Disadvantage:

• Limitation to certain application areas
• Dependency in regard to a certain manufacturer

6.1 Basic Terms

411© 2004 IAS, Universität Stuttgart

IA

Application areas of program generators in the process
automation field

– Instrumentation and control systems in energy and process engineering

• TELEPERM-M (Siemens)

• PROCONTROL-B (ABB)

• CONTRONIC-P (Hartmann & Braun)

– Programmable logic controller in the form of instruction lists or ladder
diagrams

• SIMATIC (Siemens)

Industrial Automation

412© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)

6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

6.2 High Level Programming Languages for Process Automation

413© 2004 IAS, Universität Stuttgart

IA

Difficulties regarding real-time programming

– High-level programming languages like BASIC, FORTRAN, COBOL
and PASCAL are not suitable for real-time programming:

• no real-time language resources
• no single bit operations
• no instructions for process input/output

– The operation of higher programming languages in comparison to
assembler languages also causes higher demands on memory and
computing times:

• Product automation: memory usage and computing times
critical

• Plant automation: computing times might be
critical

Availability • Compiler for target computer
• Real-time operating system

6.2 High Level Programming Languages for Process Automation

414© 2004 IAS, Universität Stuttgart

IA

Deployment comparison of higher programming languages

Higher level
programming languages
for process automation

Pr
op

or
tio

n
of

 th
e

ap
pl

ic
at

io
n

of
 h

ig
he

r
le

ve
l p

ro
gr

am
m

in
g

la
ng

ua
ge

s

100%

0%

1950 1960 1970 1980 1990
t

Higher level
programming languages
for technical, scientific
and commercial
applications

2000

6.2 High Level Programming Languages for Process Automation

415© 2004 IAS, Universität Stuttgart

IA

Advantages and disadvantages of assembler programming

+ memory and computing time efficiency

- higher program development costs

- lower maintainability

- problems concerning reliability

- bad readability, low documentation value

- missing portability

Operation of assembler languages
yes: automation of devices or machines with serial or mass application,

small programs
no: long-lasting, big processes that ought to be automated

6.2 High Level Programming Languages for Process Automation

416© 2004 IAS, Universität Stuttgart

IA

Legend:
object-oriented programming
language
real-time programming
language
higher level programming
languages

C
Ada

Samall
talk 80

Multi-
computer

PEARL

PEARL

Simula ALGOL 68

PL/1
CORAL 66

ALGOL60

Pascal

BASIC

C++ Eiffel

Java Ada95

COBOL

FORTRAN

 PEARL 901990

1985

1980

1975

1970

1965

1960

1955

1995

2000

Industrial Automation

417© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)
6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

418© 2004 IAS, Universität Stuttgart

IA

– no fixed programming languages for PLC-systems

– different kinds of programming, also depending on the manufacturer

– IEC 1131 is defining graphical and text-based basic-languages

– IEC 1131 is not defining any instructions!

ð as well german as english identifier for operators

Programming Languages for PLC-Systems (1)

Programming Languages of PLC (IEC 1131-1/3)

text-based representation graphical representation

flow - orientedstate - oriented

Function block
Diagram (FBD)

&

>=1

I5.3

I2.6

Q2.4

Q2.1

M23.1

Ladder Diagram
LD

()

M23.1

Q2.1

Q2.4I5.3 I2.6

flow languages
AS

S1

S2 S8

T1

T2

T8

T9

Structured
Text
ST

IF A&B = 1
THEN ...
ELSE ...

Instruction List
IL

U I 5.3
U I 2.6
O Q 2.1
ON M 23.1
= Q 2.4

6.3 Programming Programmable Logic Controls

419© 2004 IAS, Universität Stuttgart

IA

– base of all programming languages are logical connections

– addition of possibilities for time processing

Programming Languages for PLC-Systems (2)

– suitable kind of representation depends on problem

• state-oriented program parts are more suitable for FBD or LD

• flow-oriented program parts are more suitable for IL or AS

– the different representations can be converged into each other

Be aware:

Some operations can only be programmed using IL (e.g. bit shifting)!

6.3 Programming Programmable Logic Controls

Example:
Exit 1 (exit1) and exit 2 (exit2) are only true, if either entry 3 (entry3) is true or
if both entries 1 (entry1) and 2 (entry2) are simultaneously true

420© 2004 IAS, Universität Stuttgart

IA

Instruction List (IL)

– similar to assembler

– all functionality of a PLC can be programmed using IL

– consistent structure of every statement
Mark(opt.): Operator Operand comment(opt.)

– the programming is done by connecting signals

6.3 Programming Programmable Logic Controls

Realization of the example using AWL (chalkboard writing)

421© 2004 IAS, Universität Stuttgart

IA

Structured Text (ST)

– high-level language, similar to Pascal
• declarations

e.g.: alarm := on AND off;
• sub program calls

e.g.: alarmlamp(S:=on, R:=off);
• control statements

e.g.: IF alarm
THEN alarmlamp(S:=on, R:=off);

END_IF;

– additional language constructs for time processing and process data access

– suitable for programming large systems

6.3 Programming Programmable Logic Controls

Realization of the example using ST (chalkboard writing)

422© 2004 IAS, Universität Stuttgart

IA

Ladder Diagram (LD)

– simple illustration
– similar to the circuit diagram of the relay technology
– symbols for „normally open contact“, „normally closed contact“, und „relay

coil“ (output)

Disadvantage: difficult representation of complex mathematic functions

normally
open

contact

normally
closed
contact

relay coil

– symbolized current flow from left to right
– I/O states are mapped onto switch-states
– the program is read from top to bottom

6.3 Programming Programmable Logic Controls

Realization of the example using LD (chalkboard writing)

423© 2004 IAS, Universität Stuttgart

IA6.3 Programming Programmable Logic Controls

– similar to the well known symbols for function blocks (DIN40900)

– amount of symbols is not confined to logical basic elements

– I/O states are directly used as Input-/Outputsignals
– clearly arranged representation

Realization of the example using FBD (chalkboard writing)

ð memory marks, counter, timer and freely definable blocks possible

Function Block Diagram (FBD)

Industrial Automation

424© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)

6.4 Real-time Programming Language Ada 95
6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

6.4 Real-time Programming Language Ada 95

425© 2004 IAS, Universität Stuttgart

IA

Lady Ada Lovelace

Ada
Name of the 1. female programmer
Named in the honor of the
mathematician
Augusta Ada Byron, Countess of
Lovelace, daughter of Lord
Byron. Ada Lovelace (1815- 1851)
worked with Charles Babbage on his
“Difference-and Analytic-Engine”.
The idea of programming this
machine with punched cards can be
traced back to Ada Lovelace.

6.4 Real-time Programming Language Ada 95

426© 2004 IAS, Universität Stuttgart

IA

Characteristics of Ada

– Suitable for the development of extensive software systems (> 107 lines)
• Modularization concepts

• Separation between specification and implementation of units

• Support to reuse of software components

• Exception handling as part of the module’s code

– Real time specific features
• Fulfillment of absolute and relative time requirements

• Execution of parallel activities

• Prioritization and scheduling of parallel activities

– Extensive validation of each Ada95 compiler against compliance standards
• Several thousand test programs

6.4 Real-time Programming Language Ada 95

427© 2004 IAS, Universität Stuttgart

IA

Ada 95 program units

– Subprograms
• Specific functionality encapsulated in executable pieces of code

– Concurrently executing programs
• Different program sequences that are executed at the same time

– Shared resources with synchronized access
• Data structures with access protected by monitors

– Reusable libraries
• Group of functionality related subprograms, tasks and protected units

è Functions and procedures

è Tasks

è Packages

è Protected variables

6.4 Real-time Programming Language Ada 95

428© 2004 IAS, Universität Stuttgart

IA

Ada 95 basic program structure

– No explicit superordinate program

• Definition of a subprogram as main routine

– Execution of program units from the main routine

– Programs units stored in libraries or directly declared

Ada program

Main routine

procedure main is
begin

...
end main;

Libraries
package A is
begin

...
end A;

. . .

procedure P;

function F;

task T;

protected PT;

6.4 Real-time Programming Language Ada 95

429© 2004 IAS, Universität Stuttgart

IA

Example of unit structure

package package_name is
declaration
(types, subprograms,
tasks, protected units, ...)
private
private part (declaration)

end package_name;

Specification (package declaration)

package body package_name is
further declaration
subprograms’ bodies
begin
instructions

end package_name;

Implementation (package body)

externally
visible part

externally
invisible part

declaration

instructions

– Specification

– Implementation

= external interface
= realization of the program unit

6.4 Real-time Programming Language Ada 95

430© 2004 IAS, Universität Stuttgart

IA

Declaration and implementation of units

package General is

protected Variable is

function read return Float;

private
protectedData: Float:= 0.0;

end Variable;

...

end General;

package body General is
protected body Variable is

function read return Float is
begin
return protectedData;

end read;
end Variable;

...

end General;

Specification (File General.ads) Implementation (File General.adb)

– Separation of specification and implementation in different files

6.4 Real-time Programming Language Ada 95

431© 2004 IAS, Universität Stuttgart

IA

Concurrent programming concepts

– Task as a concurrent, parallel running sequences of commands

– Task as a encapsulated unit

è Declarations made within a task are not visible outside it

– Communication between task units

Task unit

– Requirement to enable the reaction to simultaneous events

è Concept of parallel tasks to perform parallel activities

– Support of concurrent programming

è Message passing and via shared variables

6.4 Real-time Programming Language Ada 95

432© 2004 IAS, Universität Stuttgart

IA

Realization of tasks

– Declaration and implementation of tasks in a library or directly in the
program unit

– Planning of tasks done at the begin of the superordinate program unit

– End of execution and deletion after reaching the task’s end statement

with package_name; use package_name;

procedure main_procedure_name is

task T3;

task body T3 is
...

end T3;

begin
...

end main_procedure_name ;

package package_name is
task T1;
task T2;

end package_name;

package body package_name is
task body T1 is
begin
...

end T1;
task body T2 is
begin
...

end T2;
end package_name;

6.4 Real-time Programming Language Ada 95

433© 2004 IAS, Universität Stuttgart

IA

Task types and objects

– Task types provide a template for the instantiation of task objects

– Tasks of the same type have similar properties and functionality

– Individual task objects can be parameterized during instantiation

With General; use General;
procedure main is

M1 : monitorValue(1);
M2 : monitorValue(2);
M3 : monitorValue(3);

begin
-- Main code
...

end main;

package General is

task type monitorValue(X: Integer);

task body monitorValue(X: Integer) is
begin
-- Implementation code
...

end monitorValue;

end General;

6.4 Real-time Programming Language Ada 95

434© 2004 IAS, Universität Stuttgart

IA

Synchronization of tasks

– Resource oriented synchronization
• Establish rules to access shared resources

è Rendezvous concept

è Protected units

Synchronization concepts in Ada 95

– Logical synchronization
• Establish a timely sequence of the tasks’ execution

6.4 Real-time Programming Language Ada 95

435© 2004 IAS, Universität Stuttgart

IA

The rendezvous concept (1)

Caller Receiver

If necessary, data transfer

If necessary, data transfer

Rendezvous
Receiver.entryName; accept entryName do

end entryName;

– Handshake method

• Definition of timely synchronization points between the tasks

• Mutual wait of the tasks

– Rendezvous has on the calling side the form of a procedure call

– Definition of calling declaration (entry) and calling point (accept)

6.4 Real-time Programming Language Ada 95

436© 2004 IAS, Universität Stuttgart

IA

The rendezvous concept (2)

task T1 is
entry sync;
end T1;

task body T1 is
begin

...

T2.sync;
accept sync;

end T1;

task T2 is
entry sync;
end T2;

task body T2 is
begin

accept sync;
...

T3.sync;

end T2;

task T3 is
entry sync;
end T3;

task body T3 is
begin

accept sync;
...

T1.sync;

end T3;

– Declaration of entry points declared in the task’s specification

– Calls and accept statements in the tasks’ implementation code

– Function principle: task calls the entry point another task

è Execution sequence T1, T2, T3, T1, … is guaranteed in the code above

6.4 Real-time Programming Language Ada 95

437© 2004 IAS, Universität Stuttgart

IA

Dynamic
run of the
multitask
program
example

T1

accept sync;

T2.sync;

T2
accept sync;

T3.sync;

T3
accept sync;

T1.sync;

6.4 Real-time Programming Language Ada 95

438© 2004 IAS, Universität Stuttgart

IA

The select statement

– Alternative sequence with the select statement
• Conditional synchronization
• Timed waiting

select
accept entryName1;
or
accept entryName2;
...
or
delay time_out;
-- Alternative code

end select;

select
Receiver.entryName;
or
delay time_out;
-- Alternative code

end select;

Timed waiting

select
accept entryName1;
or
accept entryName2;
...
else
-- Alternative code
end select;

select
Receiver.entryName;

else
-- Alternative code

end select;

Conditional synchronization

6.4 Real-time Programming Language Ada 95

439© 2004 IAS, Universität Stuttgart

IA

……

Protected units and resource synchronization (1)

– Problem of accessing shared variables

– Monitors for exclusive access

– Interface as protected operations

– Access to the shared variable
controlled by a intern monitor

• Protected operations are not
executed in parallel

• Sequential ordering of
simultaneous requests

è Tasks access the shared
variable exclusively

6.4 Real-time Programming Language Ada 95

440© 2004 IAS, Universität Stuttgart

IA

Protected units and resource synchronization (2)

protected S is

entry P;
procedure V;
function G return Boolean;

private
Sem : Boolean := True;

end S;

protected body S is
entry P when Sem = True is
Sem := False;

end P;

procedure V is
begin
Sem := True;

end V;
...

end S;

– Protected operations are mutually
exclusive

– A procedure can manipulated the
shared variable in any way

– The entries are protected operations

– All variables of a protected unit have to
be declared private

è Functions have only read access

6.4 Real-time Programming Language Ada 95

441© 2004 IAS, Universität Stuttgart

IA

Communication between tasks (1)

– Synchronous communication

• Extension of the rendezvous synchronization with data exchange

ú Mutual wait

ú Data exchange during the rendezvous

ú Data only valid within the rendezvous

Example of synchronous communication

task body T1 is
begin
T2.entryName(I:Integer);

end T1;

task body T2 is
begin
accept entryName(I:Integer)do
...

end entryName;
end T1;

è Message passing principle

6.4 Real-time Programming Language Ada 95

442© 2004 IAS, Universität Stuttgart

IA

Communication between tasks (2)

Example of asynchronous communication

task body T1 is
begin
M.write(I:Integer);

end T1;

task body T2 is
temp: Integer;
begin
temp := M.read;
...
end T1;

protected body M is
procedure write(I:Integer);
function read return Integer;
private
Val:Integer;
end T1;

– Asynchronous communication

• Data exchange via shared variables

ú Protected operation for access

ú No waiting/ blockage during communication

è Shared variables and protected operations

6.4 Real-time Programming Language Ada 95

443© 2004 IAS, Universität Stuttgart

IA

Time operations

– Possible delay of the execution
ú Until a defined point in time
ú For a fixed time period

– Ada 95 statements delay and delay until

– Time units and operations defined in the core packages

• For standard applications, second

• For real time applications ms, μs, ns

• Operations

• Add and subtract time variables

• Read the current system time

– During a delay, the processor is occupied by another process ready to run

– After a delay, a task may have to wait to receive the processor
• Preemption by a higher priority task

6.4 Real-time Programming Language Ada 95

444© 2004 IAS, Universität Stuttgart

IA

Example of timed operations

task T2 is
ms: Duration := 0.001;
next_call: Time;

begin
loop
next_call := Clock + 10*ms;
read_sensor;
delay until next_call;

end loop;
end T2;

task T1 is
ms: Duration := 0.001;

begin
loop
read_sensor;
delay 10*ms;
end loop;
end T1;

– Task T1 activates read_sensor after a 10ms time delay
ð The subprogram activation time is relative to the previous execution

– Task T2 activates the read_sensor every 10ms
ð The subprogram is activated at fixed times

t

running
blocked

5 15

Task T1

22 32

6.4 Real-time Programming Language Ada 95

445© 2004 IAS, Universität Stuttgart

IA

Modularized exception handling

Ada 95 exception handling concept:

– Exceptions due to irregular operations possible

è Treatment of exceptions (exception handling)

– Exception handling blocks are implemented as part of the unit’s code

– If an exception occurs, control is given to the exception handling blocks

– Several exceptions can be handled in a single handling block

– Any exception not handled is propagated to the calling unit, if there is any

– Exceptions are raised by the runtime environment or by the program code

è Runtime environment: predefined exceptions

è Program code: custom defined exceptions

6.4 Real-time Programming Language Ada 95

446© 2004 IAS, Universität Stuttgart

IA

Exception handling example
procedure main is
begin
A:= readSensor(1);
B:= readSensor(2);

rate:= A/B;
-- Could be a division by 0
exception
when Constraint_Exception =>
-- Handles divisions by 0

...
when others =>
-- Handles all other exceptions

...
end main;

function readSensor (X:Integer)
return Float is
begin

temp := read(X);
if (temp < 0.0) then
raise Sensor_Exception;
-- Custom defined exception

else
return temp;

end if;
exception
when Sensor_Exception =>
-- Handles sensor exceptions

...
end readSensor;

– Handling blocks implement the exception handling
• Sensor exceptions handled within the function readSensor; others are

propagated

• Activation of specific code by constraint exceptions

• Predictable system behavior also under exception conditions

6.4 Real-time Programming Language Ada 95

447© 2004 IAS, Universität Stuttgart

IA

Real time extensions to Ada 95 (1)

– Tasks with dynamic priorities

• Base priority is established on its specification

• Active priority can differ from the above

– Hint: In Ada, a lower number means a lower priority!

task T1 is
pragma Priority(10);
end T1;

task T2 is
pragma Priority(1);
entry sync;
end T1;

task body T1 is
begin
T2.sync;
end T1;

task body T2 is
begin
accept sync do
...

end sync;

Set_Priority(20);
end T2;

Specification Implementation

è Priority inheritance

6.4 Real-time Programming Language Ada 95

448© 2004 IAS, Universität Stuttgart

IA

Real time extensions to Ada 95 (2)

– Scheduling methods
• The method used to schedule tasks can be specified

ú The pragma Task_Dispatching_Policy
ú Default method: fixed priorities; FIFO within the priorities

• Further scheduling methods can be implemented and used

– Access to protected units and the Priority Ceiling Protocol
• Ceiling priority of protected units can be defined in its specification

ú Default value: system’s highest priority
• Ceiling priority rules guarantee that there is no chance of deadlock

6.4 Real-time Programming Language Ada 95

449© 2004 IAS, Universität Stuttgart

IA

Further language extensions in Ada 95

core language +
base library

System
programming

Real-time
processing

Distributed
systems

Information
system Numerics Security

Inline-
machine-
language
Interrupts
....

Flexible
scheduling
Flexible
priorities
Flexible
queues

....

Partitions
Inter-
partition
communication
Static and
dynamic
RPCs
....

Decimal
format
"PIC"
format
....

Control over
internal
numeric
formats
Complex
numbers
....

Code revision
and code inspection
Reduction of available
language constructs

...

Dynamic character strings
Interfaces to other PL
I/O

Industrial Automation

450© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)

6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++
6.6 The Programming Environment Java

6.5 The Programming Languages C and C++

451© 2004 IAS, Universität Stuttgart

IA

History of C and C++

1978 Development of the operating system UNIX by

Dennis Richie in the programming language C.

1986 Extension of C for the object-oriented programming to the

programming language C++.

6.5 The Programming Languages C and C++

452© 2004 IAS, Universität Stuttgart

IA

Development objectives for C and C++

C: – efficient system programming language for hardware
– flexible like assembler
– control flow possibilities of higher programming languages
– universal usability
– restricted language size

C++: – C is enhanced with object orientation
– the efficiency of C is kept
– improvement of productivity and quality

Hybrid programming language

Concurrent C: C is enhanced with concepts dealing with real-
time processing.

6.5 The Programming Languages C and C++

453© 2004 IAS, Universität Stuttgart

IA

Language concepts of C

– Four data types: char, int, float, double

– Combination of data : vectors, structures

– Control structures: if, switch, while, do-while, for,

continue, break, exit, goto

– Input/Output: Library functions

– Large variety of bit manipulation possibilities

– Weak type concept

– Separate compiling of source files

– Weak exception handling

– No explicit tools for parallel processing

6.5 The Programming Languages C and C++

454© 2004 IAS, Universität Stuttgart

IA

Program setup

Insertion of certain libraries or files;
Definition of names for constants and macros;

Declaration of global variables;

main ()
{

Variables that are known within the function “main” have to be
declared;
Instructions;

}

Function type function name (list of parameters)
{

Variables that are known within the function have to be declared
here;
Different instructions;
Return (value);

}

6.5 The Programming Languages C and C++

455© 2004 IAS, Universität Stuttgart

IA

Example

#include <stdio.h> // Standard input/output library

main () // Marker for program start

{

printf („My first program“) // Output instruction

}

6.5 The Programming Languages C and C++

456© 2004 IAS, Universität Stuttgart

IA

Language concepts of C++

– Class

• Data structure with data and methods (member function)

– Constructor

• Creation of an instance of a class (object)

– Destructor

• Release of class objects

– Overloading of functions

– Encapsulation of data

– Inheritance

– Polymorphism

• Triggering of different processing steps by messages

6.5 The Programming Languages C and C++

457© 2004 IAS, Universität Stuttgart

IA

Structure of a C++ program

Classclass Wash_machine
{

};

Member
int rotspeed1, rotspeed2;
float capacity;

Data

void calculate (rotspeed1,rotspeed2);
void type (float);

Methods

Wash_machine Drum;

Object

6.5 The Programming Languages C and C++

458© 2004 IAS, Universität Stuttgart

IA

Suitability of C and C++ for real-time systems (1)

– C and C++ contain no real-time language constructs.

– Deployment of real-time operating system to realize real-time
systems.

Call of operation system functions in a C coded program

– Libraries are provided.

6.5 The Programming Languages C and C++

459© 2004 IAS, Universität Stuttgart

IA

Suitability of C and C++ for real-time systems (2)

Programming languages C and C++

é Most often used program languages for real-time applications
• Great number and variety on support tools
• Well extended programming environment
• Compilers are available for most micro processors
• Connection to real-time operating systems like

QNX, OS9, RTS, VxWorks

ð Caution with object-oriented language tools
– non-deterministic run-time behavior
– inefficient memory space usage

Industrial Automation

460© 2004 IAS, Universität Stuttgart

IA

§ 6 Programming Languages for
Process Automation

6.1 Basic Terms

6.2 High Level Programming Languages for Process Automation

6.3 Programming Programmable Logic Controllers (PLC)

6.4 Real-time Programming Language Ada 95

6.5 The Programming Languages C and C++

6.6 The Programming Environment Java

6.6 The Programming Environment Java

461© 2004 IAS, Universität Stuttgart

IA

History of Java

1990 Concept of the programming language Java by the Sun Corp.
(James Gosling, Bill Joy)

Objective: Programming language for
entertainment electronics (interactive TV)

Named after coffee beans known as Java

1995 Reorientation of the development direction towards a language
that could be used for transmitting and carrying out
programs in the World Wide Web.

Freely available for non-commercial purposes

6.6 The Programming Environment Java

462© 2004 IAS, Universität Stuttgart

IA

Language concepts of Java

– Object-oriented concepts

– Interpretation of the code

• fast development cycle

• bad run-time behavior and high demand on storage space

• higher portability

– A storage manager is provided.

– Conventional pointer methods were not integrated.

– Strict type control at compile and run-time

– Lightweight processes

– GUI class library

6.6 The Programming Environment Java

463© 2004 IAS, Universität Stuttgart

IA

Translation
Computer

Target
Computer 2

Java
Compiler

Source
Program

(Java-
Code)

Java
Byte
Code

Target
Computer 1

Target
Computer n

Translator for the
target computer n

Translator for the
target computer 2

Translator for the
target computer 1

Out-
put

Out-
put

Out-
put

Second step of the translationFist step of the translation

Portability of Java through a two-stage translation method

6.6 The Programming Environment Java

464© 2004 IAS, Universität Stuttgart

IA

Differences to C++

– No pre-processor instructions like #define or #include
– No typedef clauses
– Structures and unions in the form of classes
– No functions
– No multiple inheritance
– No goto
– No overloading of operators
– Extensive class libraries

• Base classes (object, float, integer)
• GUI classes
• Classes for input/output
• Classes for network support

6.6 The Programming Environment Java

465© 2004 IAS, Universität Stuttgart

IA

Suitability of Java for the development of real-time systems

Application fields

– rapid prototyping in client/server area

– multimedia presentations
(video, sound, animation)

– intranet applications

– real-time applications

ð Storage management (garbage collection)
ð High demand on storage space
ð Bad run-time behavior

6.6 The Programming Environment Java

466© 2004 IAS, Universität Stuttgart

IA

Real-time language constructs in Java

– Input and output of process values
• comparable with C/ C++

– Parallelism
• no process support
• lightweight processes
• Round Robin Method

– Synchronization
• monitors
• semaphore variables

– Inter-process communication
• only for lightweight processes on common data

– Bit operations
• comparable with C/ C++

6.6 The Programming Environment Java

467© 2004 IAS, Universität Stuttgart

IA

Java application class HelloWorldApplication
{

public static void main(String argv[])
{

System.out.println(„Hello World!“);
}

}

Java applet import java.applet.*;
import java.awt.Graphics;
public class HelloWorldApplet extends Applet
{

public void paint(Graphics g)
{

g.drawString(„Hello World!“),5,25);
}

}

Examples for Java

6.6 The Programming Environment Java

468© 2004 IAS, Universität Stuttgart

IA

– 1. Scheduling:
Ensure the timely or predictable execution of sequences of schedulable
objects

– 2. Memory management:
Extend the memory model in order to allow real-time code to deliver
deterministic behaviour

– 3. Synchronisation:
Specification of the dispatching algorithms; avoidance to the priority
inversion problem; support to priority inheritance and priority ceiling
policies.

Extensions (1)

– 4. Asynchronous Event Handling:
Ensure that the program can cope with a large number (ten of thousands)
of simultaneous events

Extension in the Java language, to realize real-time requirements

Real-Time Java

6.6 The Programming Environment Java

469© 2004 IAS, Universität Stuttgart

IA

– 5. Asynchronous Transfer of Control (ATC):
Possibility to transfer the control from a thread upon an asynchronous
event, e.g. a timer going off

– 6. Asynchronous Thread Termination :
Ensure an orderly clean up and termination of threads without danger of
deadlocks

– 7. Physical Memory Access :
Special API to directly access memory areas

– 8. Exceptions:
Definition of new exceptions and new treatment of exceptions surrounding
ATC and memory allocators

Extensions (2)

Chapter 6: Programming Languages for Process Automation

470© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 6.2

Answer

The control of a central locking system in a car is to be realized using a
micro controller based control device.

Give reasons why it might be advantageous to implement the software in
an assembler language.

 Code generated from an assembler program is very efficient and requires
less memory space.

Thus, the cost for the series production can be lowered, as a cheaper micro
controller and less memory is required.

If the product is produced in high quantities this is more important than the
higher development cost caused by the assembler programming.

Chapter 6: Programming Languages for Process Automation

471© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 6.4

State some of the differences between the real-time programming
language Ada95 and the PLC language FBD concerning:

Notation
Language level

Application areas

Real-time features

FBDAda

text-based language graphical language
universal high level

language
language specific for

control application
suitable for large projects suitable for small

projects only

extensive real-time
features

only restricted real-time
capabilities

Answer

Chapter 6: Programming Languages for Process Automation

472© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 6.4

 Due to its language features, Ada 95 is called a real-time programming
language. Why is Ada so suitable for real-time issues? Because...

Answer

¨ Ada has no object-orientation.

¨ Ada supports Tasks.

¨ Ada is faster than other programming languages.

¨ Ada is been interpreted.

¨ Ada is a hybrid programming language.

¨ Ada supports a rendezvous concept.

¨ Ada offers methods for run-time checking and exception handling.

f

ü

ü

f

f

f

ü

Chapter 6: Programming Languages for Process Automation

473© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 6.4

The following procedure should be implemented in Ada using two tasks:

A pedestrian is waiting for a taxi and wants to get to the church. He pays
the ride and enters the church.

On the next slide there a three different code examples for this problem.
Which is the correct one and what are the others doing?

Chapter 6: Programming Languages for Process Automation

474© 2004 IAS, Universität Stuttgart

IA

Question referring to Chapter 6.4 - code examples

task passant;

task body passant is
begin

-- do something
taxi.drive;
-- do something

end passant;

task taxi is
entry drive;

end taxi;

task body taxi is
begin

-- do something
accept drive;
drive.to(church);
-- drive away

end taxi;

Alternative 1
task passant;

task body passant is
begin

-- do something
taxi.drive;
-- do something

end passant;

task taxi is
entry drive;

end taxi;

task body taxi is
begin

-- do something
accept drive do
drive.to(church);

end drive;
-- drive away

end taxi;

Alternative 2
task passant is

entry taxi;
end passant;

task body passant is
begin

-- do something
accept taxi;
-- do something

end passant;

task taxi is
entry passant;

end taxi;

task body taxi is
begin

-- do something
accept passant;
drive.to(church);
-- drive away

end taxi;

Alternative 3

f - Implements only the timing
synchronization without joint
code execution

ü- Implements the timing
synchronization with joint
code execution

f - Does not implement the
mutual synchronization

Chapter 6: Programming Languages for Process Automation

475© 2004 IAS, Universität Stuttgart

IA

Crosswords to Chapter 6

Chapter 6: Programming Languages for Process Automation

476© 2004 IAS, Universität Stuttgart

IA

Crosswords to Chapter 6

Across
3 Program unit of Ada (7)
5 Low-level programming language (9)
8 Real time programming language (3)
9 Basis for the machine independence of Java (3)

Down
1 Ada concept for synchronization (10)
2 Definition of timely synchronization points between the tasks (9)
4 Abbreviation of a PLC programming language which uses building

blocks (3)
6 Auxiliary mean to simplify assembler languages (5)
4 Representation of a PLC program similar to a circuit diagram (6,7)

