§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- 3.2 Sensors and actuators
- **3.3** Representation of Process Data in Automation Computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- **3.6** Field bus systems

Chapter 3 - Learning targets

- to know the kinds of interfaces in an automation system
- to know what sensors and actuators are and how they are built up
- to know how data is represented in automation computers
- to understand how an analog to digital conversion and back is done
- to know different kinds of converter realizations
- to be able to explain how a digital input and output of process signals is done
- to know what is meant by a field bus
- to be able to explain the different bus access methods
- to know how the PROFIBUS communication is working
- to know the most important features of the CAN bus

§ 3 Process Peripherals

3.1 Interfaces between the technical process and the automation computer system

- 3.2 Sensors and actuators
- 3.3 Representation of process data in automation computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- 3.6 Field bus systems

Input/Output Interfaces

Transmission of process signals between the technical process and the automation computer system

Process signal input:

acquisition of process data

temperature

 Process signal output: manipulation of actuators

close valve

Possibilities for the connection

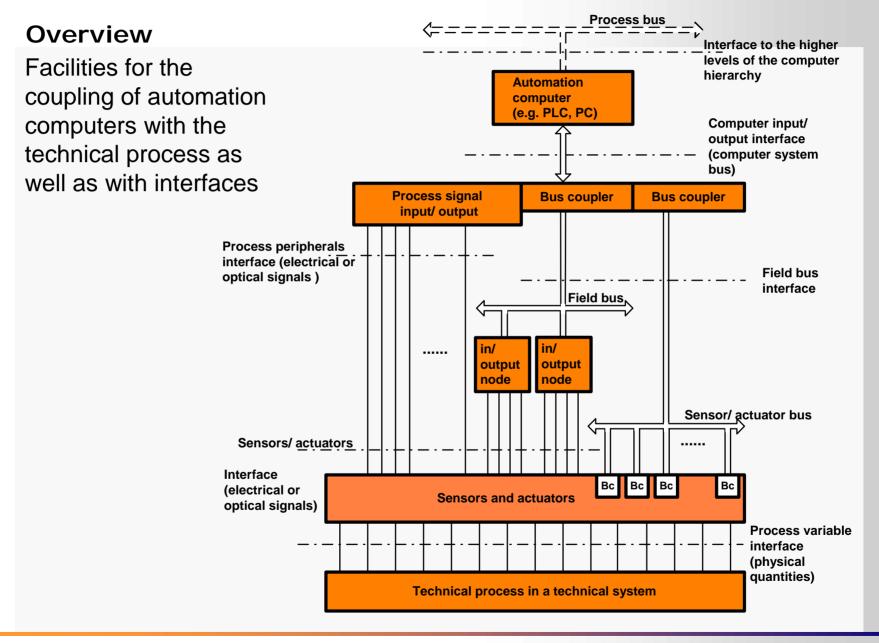
connection via bundles of lines

conventional way

connection via bus coupler module (I/O nodes)

utilization of field bus coupler

connection via sensor/ actuator bus system
 most modern way :utilization of intelligent sensors and actuators


Direct connection of sensors and actuators

- within the product automation
- short lines to micro controller

Input/ output via field bus systems

- within plant automation
- reduction of cabling and installation costs

Requirements of a bus system on actuator sensor level

- Sensors/actuators of different manufacturers connectable
- Short system reaction time
- Small connection costs
- Small construction volume
- Simple handling with wiring and start-up

Objectives of the actuator-sensor-interface (AS i)

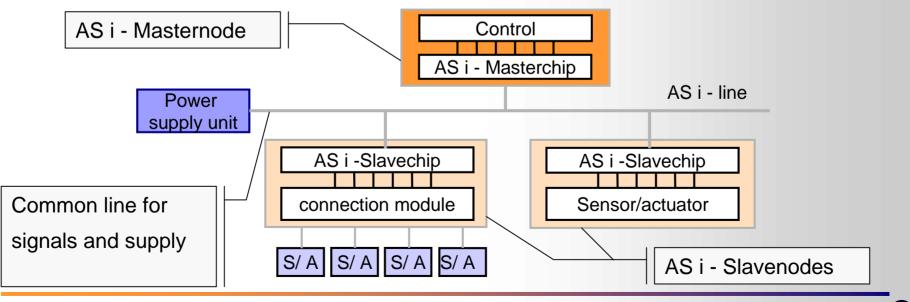
- Adjustment on actuator sensor level
 - ð Small data set per participant
 - ð Short response times
- Replacement of the parallel wiring of binary actuator/sensors
 Signals and voltage supply using the same line

Characteristics of AS i

- User defined network structure
- Transmission principle
 - single-master-system with cyclic polling
 - one fixed address per slave
 - max. 31 slaves per line
 - up to 4 sensors/actuators per slave
- Transmission medium
 - not protected and not twisted two-wire line
 - common use for data and energy
- User data and cycle time
 - 4 bits user data
 - 5 ms max. cycle time

ð Cycle time adapts to the number of slaves

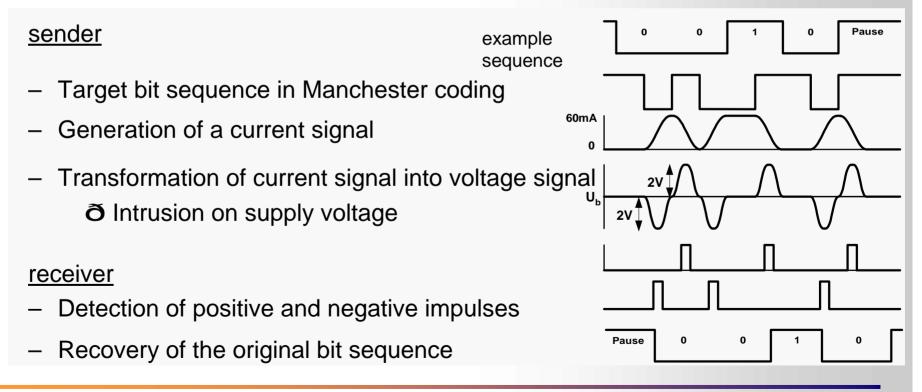
AS i- principle structure


– 1 Masternode

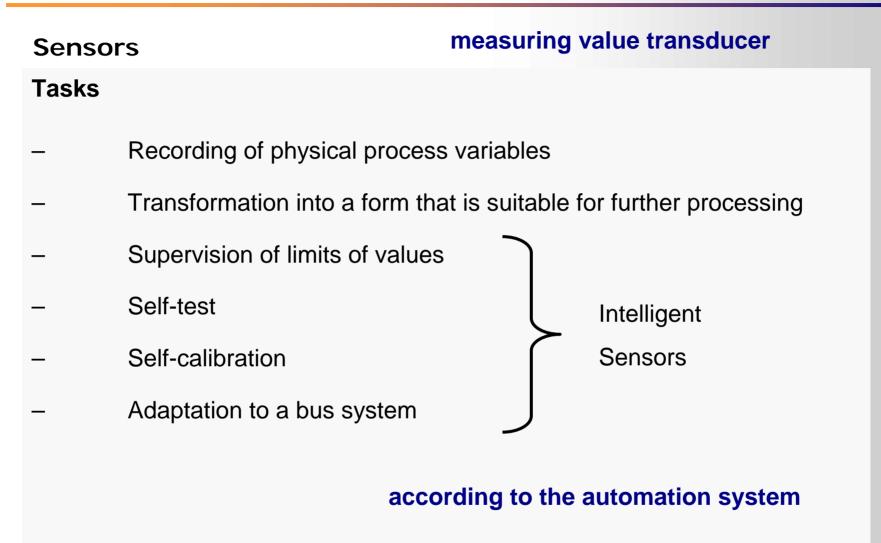
Costs of masterchip approx. 10 €

- Variant 1: nodes integrated in controlling
- Variant 2: separate locking module (e.g. for PLC)
- Supervises bus communication
- Slavenodes

Costs of slavechip approx. 5 €


- Variant 1: Sensor/actuators with integrated AS i slavechip
- Variant 2: Separate connection module

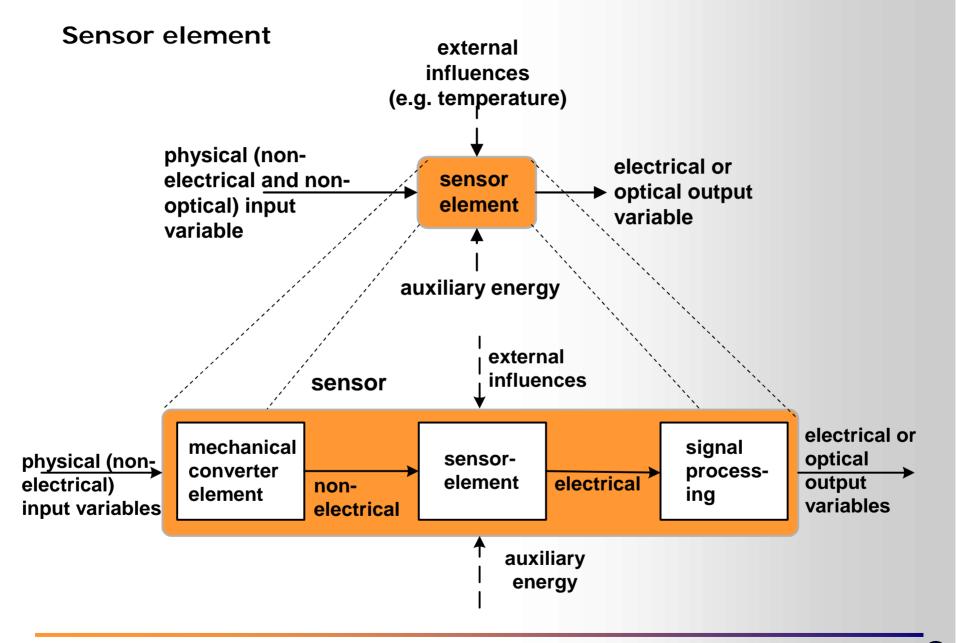
Signal and supply on the same two-wire line


- Signal is modulated on DC voltage supply
- Condition: no direct current contingent of the signals

Realization by means of alternating pulse modulation (APM)

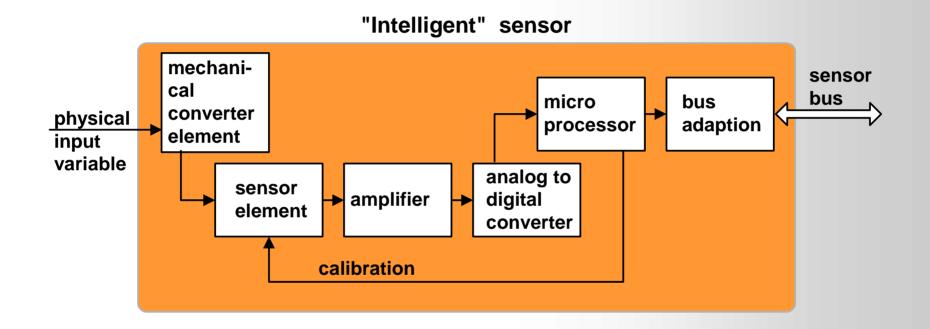
§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- **3.2** Sensors and actuators
- 3.3 Representation of process data in automation computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- 3.6 Field bus systems


detecting device, transmitter

Task

Transformation of a non-electrical, physical variable into a electrical or optical value


Usage of physical effects

- Variation in resistance
- Variation of inductance
- Variation of capacity
- Piezoelectric effect
- Thermo-electrical effect
- Photo-electrical effect
- Eddy current effect
- Radiation absorption

IA

Intelligent sensor

Classification of sensor elements according to the kind of sensor output signal

- digital sensors
- binary sensors
- amplitude analog sensors
- frequency analog sensors

Sensor system

Integration of several sensors for different process variables with the evaluation electronics on one component

Binary sensors

- Yes/No information
- Limit value transmitter/ threshold transmitter
- Example: end switch, light barrier

Digital sensors

- Conversion of a non-electrical, measured quantity into a digital output signal
- Conversion possibilities
 - Direct conversion

Conversion of the non-electrical signal with encoder disc (rotating movement) or encoder ruler (linear movement) into a digital signal

Indirect conversion

Conversion of non-electrical signal into an amplitude analog signal, then analog to digital conversion

Amplitude analog sensors

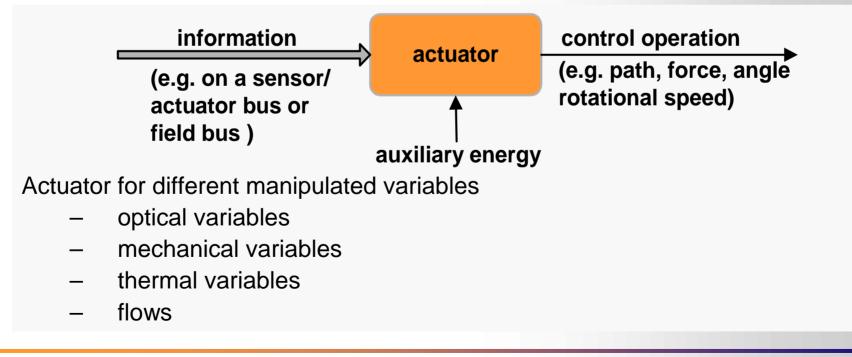
- The transformation of a non-electrical, measured quantity into an amplitude analog output signal. The amplitude of the electronic output signal is proportional to the physical quantity to be measured
- Often with transducer step in the same case
 - amplification
 - normalization
 - linearization
 - temperature compensation
- For all important measured values available

Frequency analog sensors

- Outputs an alternating voltage signal whose frequency is proportional to the physical value to be measured.
- Advantages:
 - Insensitiveness against disturbing interferences on the transmission lines
 - Simple frequency-digital conversion with a counter
 - No loss of precision from amplification and transmission
 - Simple potential separation with transmitter
 - Even in comparison to amplitude analog sensors

Different kinds of sensor elements

physical process variable	sensor element	output variable
temperature	thermo element metal resistor semiconductor resistor (negative temperature coefficient resistor) ceramic resistor	mV variation in resistance variation in resistance
	(positive temperature coefficient resistor)	variation in resistance
pressure	pressure-can with membrane and strain gauge element	variation in resistance
	pressure-can with silicon-membrane (piezo resistive effect)	variation in resistance
force	strain gauge element inductive force sensor Piezoelectric sensor	variation in resistance variation of inductivity charge
Rotational speed	Impulse generator Impulse counter	V pulse sequence
acceleration	Silicon piezo-resitor Silicon condensator	variation in resistance variation in capacity
flow	ring piston meter inductive rate of flow measurer	pulse sequence mV
approach	Hall-element out of silicon	mV
angle	angle encoder pulse generator	digital value pulse sequence
moisture	lithiumchloride moisture sensor	mV
Light intensity	photo diode photo resistor	μA variation in resistance


Actuators

Tasks

Conversion of the information obtained from the automation computer system into manipulating interventions in the technical process

"muscles" of the automation system

Actuator as a converter of information into a control operation

171

Actuators with mechanical output quantities

actuator principle	actuator		
electronic mechanical movement	electro-motor, stepper motor, electro-magnet, linear-motor		
hydraulic cylinder	hydraulic actuator		
pneumatic cylinder	pneumatic actuator		
piezoelectric effect	piezoelectric actuators, electrostrictive actuators		
magnetostrictive effect	magnetostrictive actuators		
electrorheologic effect	electrorheologic actuators		
magnetorheologic effect	magnetorheologic actuators		
electrically produced gas pressure	chemical actuators		
bimetal effect	thermo bimetal actuators		
memory metals	memory metal actuators		
silicon micro techniques	micro mechanical actuators		

§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- 3.2 Sensors and actuators

3.3 Representation of process data in automation computers

- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- 3.6 Field bus systems

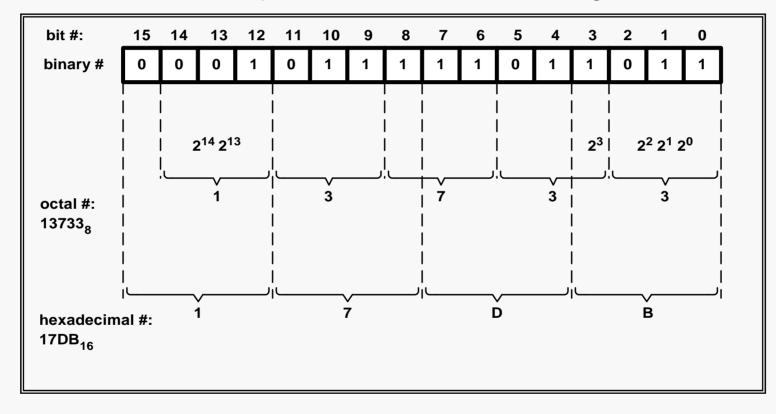
Kinds of electrical process signals

_	 Analog process signals amplitude analog frequency analog phase analog 	
_	Binary process signals	switch position
_	Digital process signals	n-bit word
_	Process signals in the form of pulses	rotational speed indicator
_	Process signals in the form of pulse ed	ges

state transition of a process variable

Conversion of analog process variables

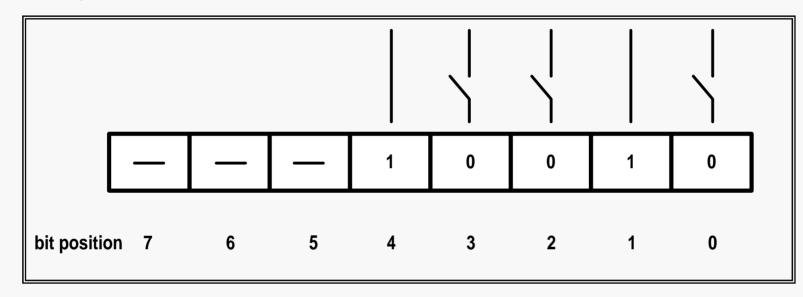
Analog process variables have to be converted into digital values before they could be used in a computer system. Therefore, the analog value range is discretised.


representation error (% of maximum value)			erter	necessary word length (in bytes)
0,39%	8	0	255	1
0,1%	10	0	1 023	2
0,025%	12	0	4 095	2
0,006%	14	0	16 383	2
0,0015%	16	0	65 535	2

Important:

A word length of 16 bit is sufficient for representing analog process variables.

Representation of digital process variables


Digital process variable are usually represented as binary, octal or hexadecimal values. The picture illustrates each encoding.

Important: A word length of 16 bits is normally sufficient for representing digital process variables.

Representation of contact positions

Contact positions are frequently summarised as a computer word. In such case single bits have to be addressable and modifiable.

Important: A word length of 16 bits is normally sufficient for representing binary process variables and pulse shaped process variables.

Question:Why use 32 bit computers for automation tasks?Larger address space, shorter calculation times

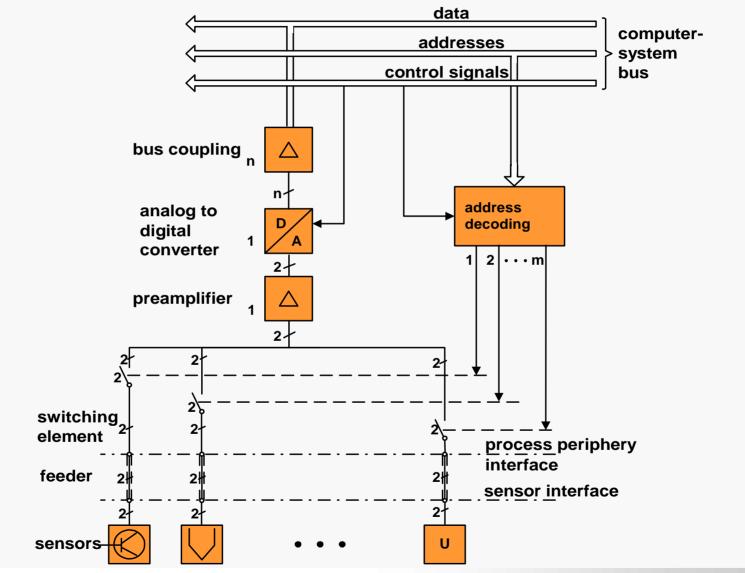
§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- 3.2 Sensors and actuators
- 3.3 Representation of process data in automation computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- 3.6 Field bus systems

Various forms of analog process signals

- electrical voltage signals
- electrical current signals
- electrical analog resistance values

Various forms of signal conversion


Realization arises from the requests of the complete system

- quick A/D conversion
- slow A/D conversion

Signals are needed immediately

Usage of the process time

Fundamental structure

Fast analog to digital conversion

- Fast analog to digital conversion ADC with conversion time of 1-100 μ s, i.e.

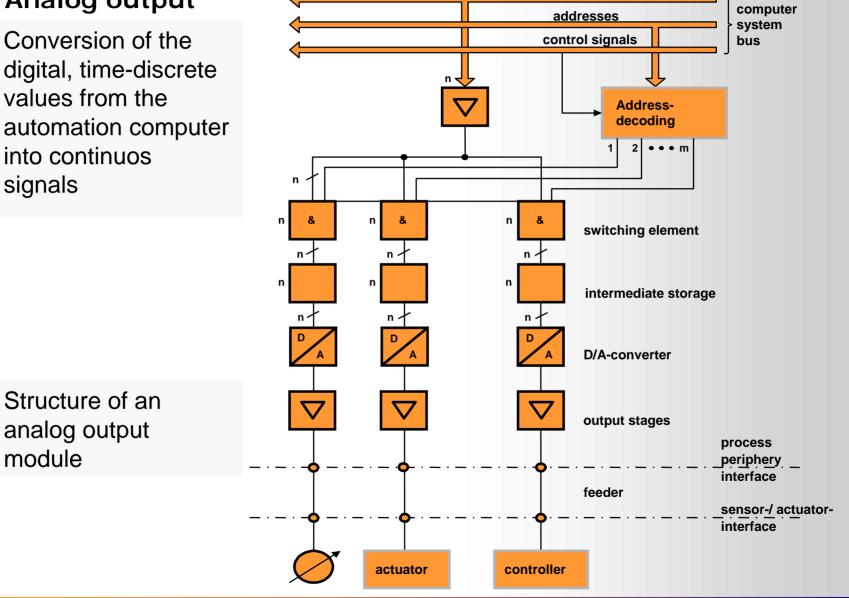
data computeraddresses system control signals bus bus coupling _n address analog to decodina digital converter 2 · · · m preamplifier switching element process periphery interface feeder sensor interface sensors

Sampling frequency > 10.000 samples per second

- Through-switching of the selected analog signal to the ADC and conversion
- 2. Input of the convertedvalue via the data bus

Slow analog to digital converter

- Slow analog to digital converter ADC with conversion time of > 100 μ s, i.e.


Sampling frequency < 10.000 samples per second

- 1. Address of the analog signal is output to the switching device
- 2. Conversion into digital value is initiated
- 3. A different program is initiated, to use the (rather long) conversion time
- 4. When conversion is completed an interrupt signal is created
- 5. The corresponding interrupt program reads in the converted information

IA

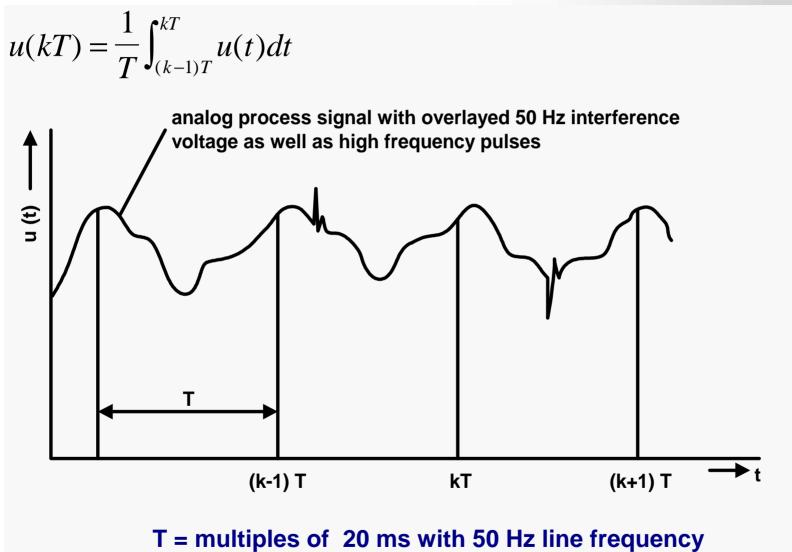
Analog output

Conversion of the digital, time-discrete values from the automation computer into continuos signals

data

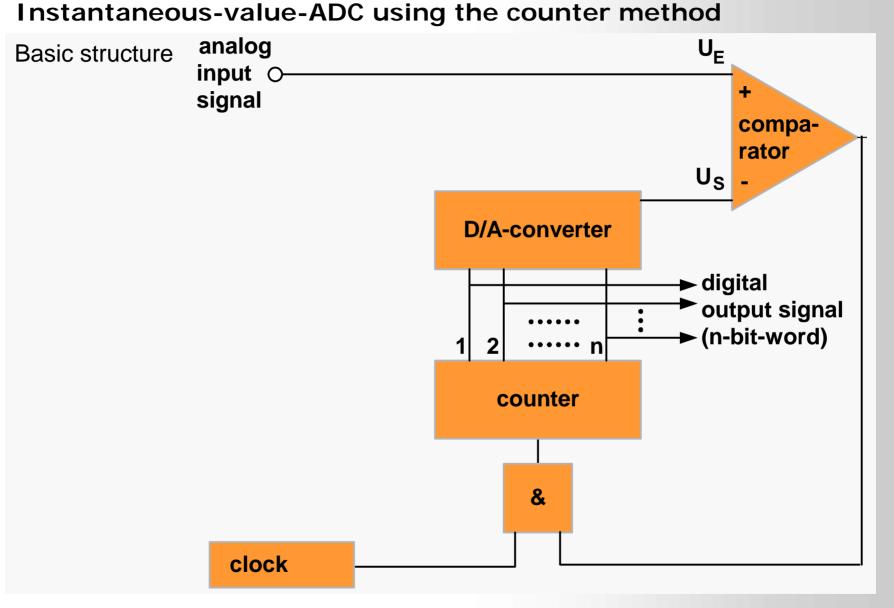
Remarks to the analog output

- Intermediate storage is necessary in order to store the information at the switching element
- Analog control operations often through servo motors that are controlled by binary signals over the digital output
- Analog output value corresponds to time span of the binary signal output

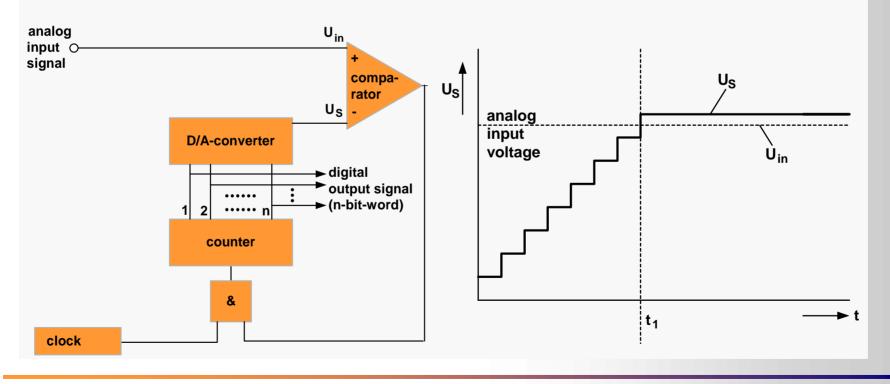

Types of analog to digital converter

- Instantaneous value converter
 - single values of an analog process signal are sampled and converted into digital values
- Integrating converter (Mean Value Converter)
 - Analog process signal is integrated over a period T of the net frequency and the mean value is calculated
 - Mean value is converted into digital value

$$u(kT) = \frac{1}{T} \int_{(k-1)T}^{kT} u(t) dt$$


- Advantage: high measurement safety accuracy
- Relative low effort
- Elimination of high frequency non-periodic disturbances
- Suppression of line frequency interference voltages
- Only applicable for relatively slowly changing process signals

The principle of the integrating ADC

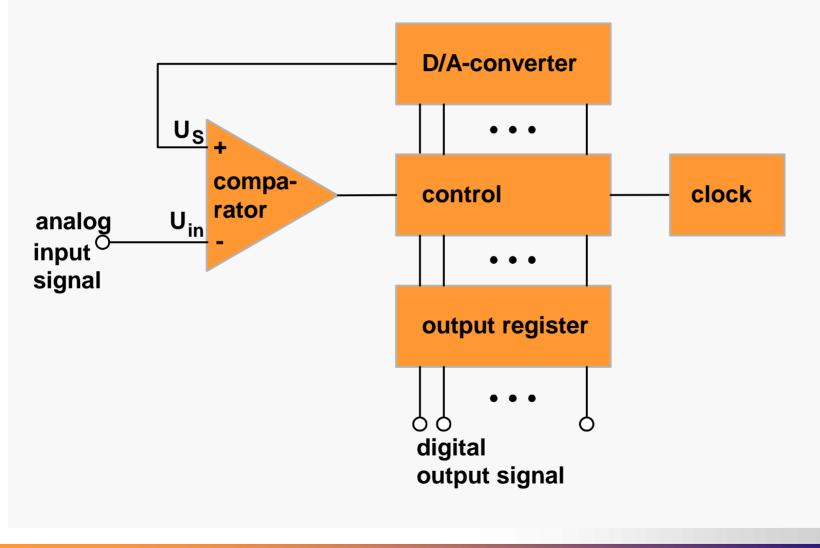

Conversion methods for analog to digital converter

	Instantaneous value converter	Mean value converter
Advantage	High conversion speed 10 ⁴ 10 ⁸ values/s	High interference voltage suppression
Disadvantage	Interference pulses cause falsification of digital values	Low conversion speed
Convertion method	Counter method, step method, direct method	Voltage time or voltage frequency converter

Principle procedure

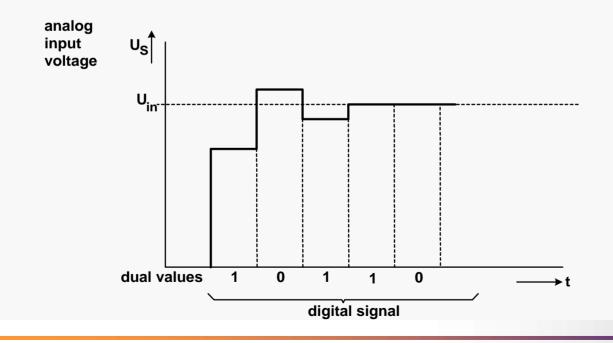
- U_s at the output of the DAC
- compare to U_{in}
- in case of equality the counter gets no impulse
- otherwise counter is increased
- new counter signal is D/A converted
- method is repeated until $U_s > U_{in}$

Instantaneous-value-ADC using the counter method


Conversion time T is depending on:

- Transient behavior of the DAC
- Switching speed of the comparators
- Input voltage
- Word length of the digital output (2ⁿ steps in worst case)
- Clock rate f

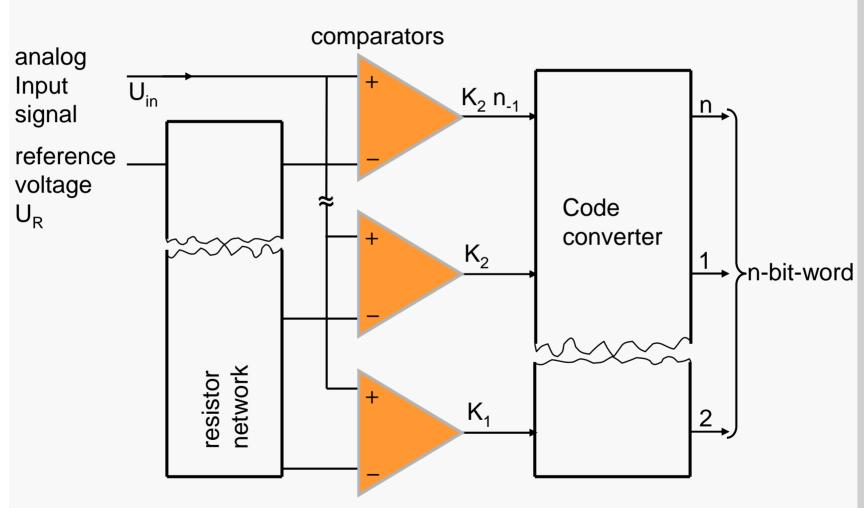
Clock frequency depends on rise time of the DAC and switching speed of the comparator


Instantaneous-value-ADC using the step method

Basic structure

Principle procedure

- Control sets highest order bit (MSB = Most Significant Bit)
- U_s at exit of the DAC
- Comparison with U_{in}
- If $U_{in} > U_S$ MSB stays set, if not reset
- Method is repeated for further bits
- After the last comparison (bit n) the value of the analog input signal is represented digitally encoded in the output register



Instantaneous-value-ADC using the step method

Conversion time T

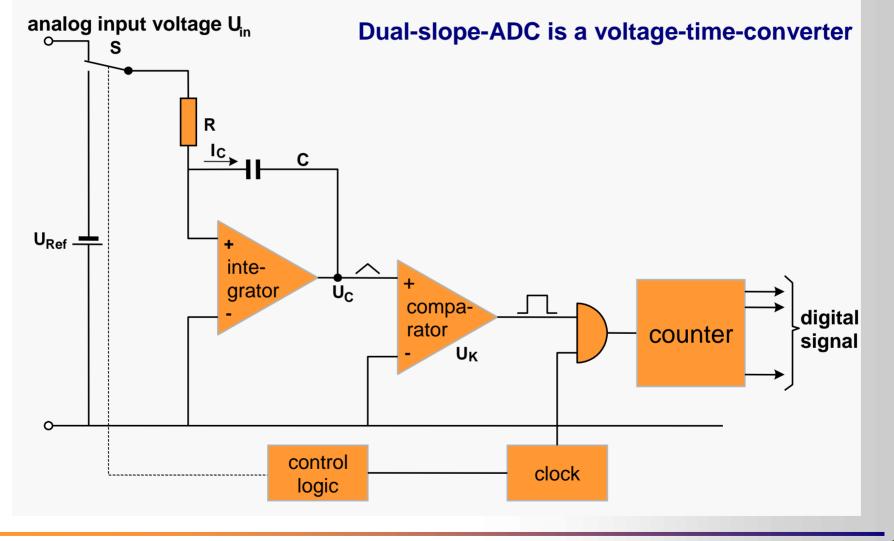
- constant (after n steps results are available)
- T = n/f
- Limitation through
 - settling time of the DACs
 - switching speed of comparators

Instantaneous-value-ADC using the parallel conversion method

Principle structure

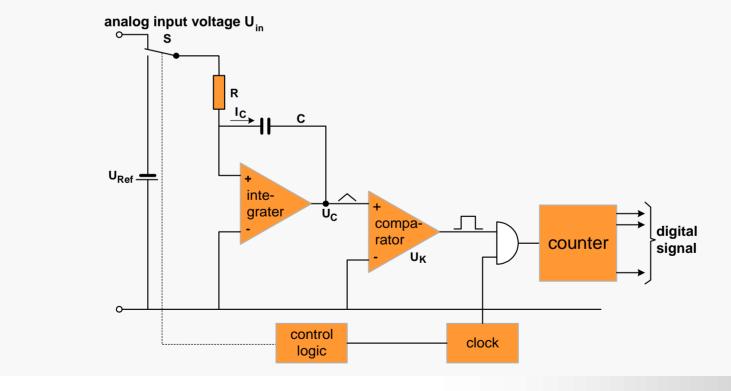
Principle procedure

- Input signal is given to 2ⁿ 1 comparators
- Reference voltages are produced over resistor network with reference voltage source
- Conversion through code converter in n-bit-word

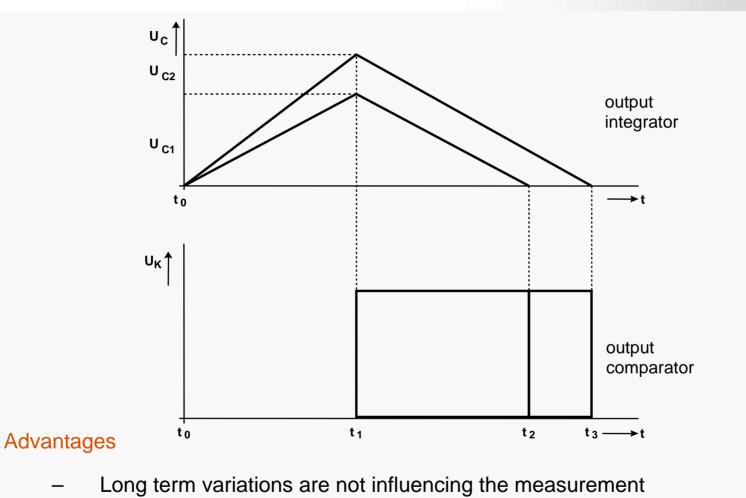

Conversion time

- Dependent on switching speed of the comparators and of the code converter
- 10⁸ values/sec
- Very costly, 8-bit ADC needs 2⁸ 1 comparators

IA

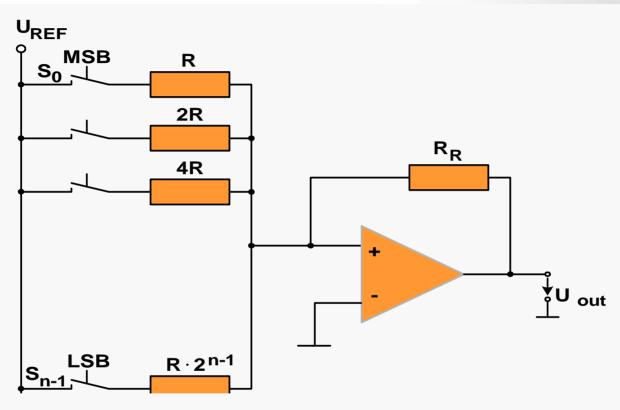

Integrating ADC using the "Dual-slope-method"

Basic structure



Principle procedure

- Capacitor C is charged from t_0 until t_1 with the current $I_C = U_{in}/R$
- U_{Ref} is set at the input of the integrator at time t_1
- Capacitor C is discharged, U_{in} defines the time span of discharge
- Time until $U_0 = 0V$ is directly proportional to U_{in}
- Measurement of time span with a counter, which counts the impulses generated by time clock

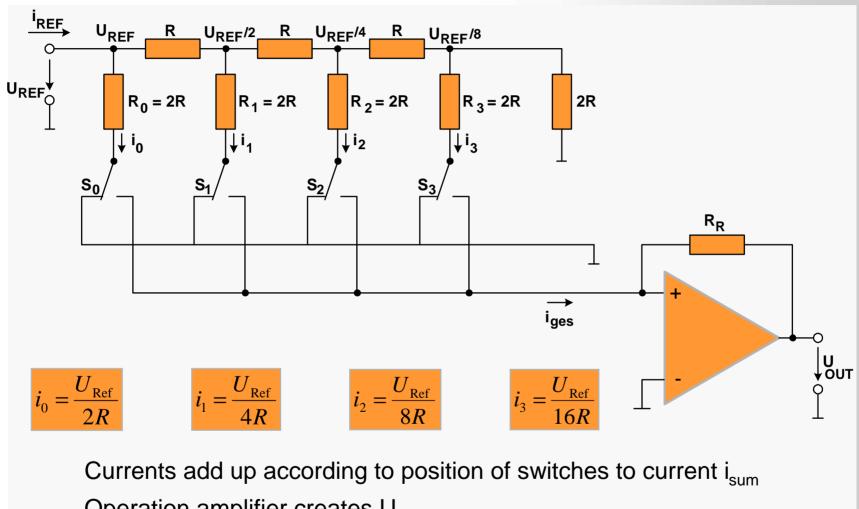


 Precision is independent of the product of R*C, it is only dependent on the precision of the reference source and of the operation amplifiers

Types of digital-to-analog converter

- Most of the DACs are using a direct method with resistance network
- Various characteristics of the resistance network
- Various ways of realizing a DAC with resistor network
 - DA-conversion via the summing up of weighted currents
 - DA-conversion via a conductor network

Realization of a DAC by summing up of weighted currents



Disadvantages:

- very different potentials on the switches

(Bipolar transistors or field-effect transistors)

necessary precision of the very different resistors is hard to fulfill

Realization of a DAC with the help of a conductor network

Operation amplifier creates U_{out}

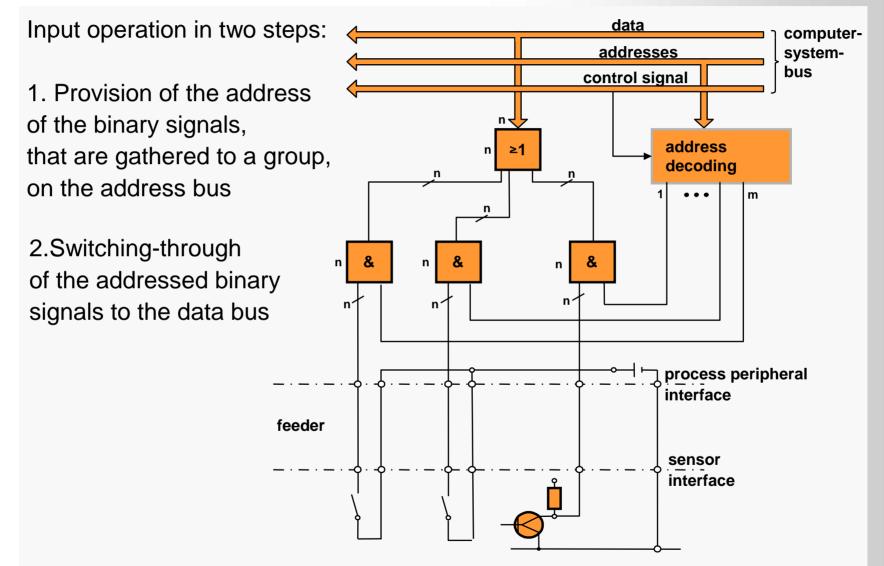
Switches are often bipolar transistors of field-effect transistors

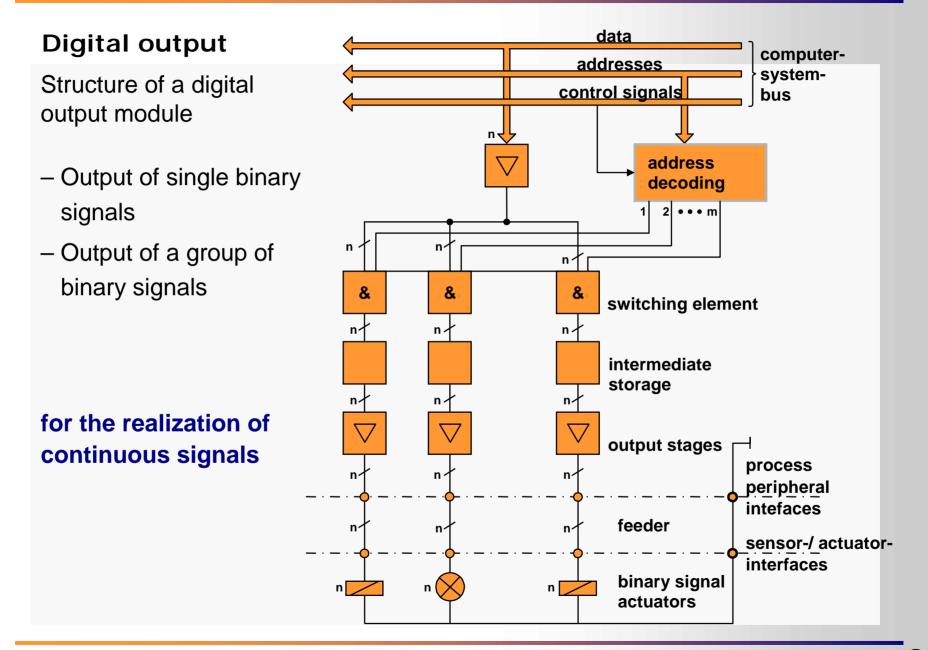
§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- 3.2 Sensors and actuators
- 3.3 Representation of process data in automation computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- 3.6 Field bus systems

Digital input

- Input of single binary process signals
 e.g.: limit switch, maximum value transmitter
- Input of groups of binary process signals
 e.g.: position of multistage switch


Kinds of binary input signals


- binary voltage input
- binary current input
- binary contact input
 - power supply for contact transmitter
 - facility for the suppression of contact bounces

Distinction regarding signal parameters

- Static digital input
 - High and low for binary signal correspond to the two states
- Dynamic digital input (impulse input)
 - Edges of the signal act as binary signal parameter
 - Transitions from high to low and vice versa set the assigned storage element
 - Spontaneous digital input if interrupt is triggered

Structure of a module for the static digital input

Kinds of binary output signals

- Voltage output
- Current output
- Output of potential-free contact positions

Execution of digital output

- Output signal of process computer is only valid if according address is output on the address bus
- Control of devices (contactor, relays, lamps) need a continuous signal as input signals

ð Intermediate storage

Output operation in three steps:

- 1. Provision of the address of the word to be given out
- 2. Output of the selected binary signal in the intermediate storage
- 3. Output of the continuous signal from the intermediate storage to the connected device

§ 3 Process Peripherals

- 3.1 Interfaces between the technical process and the automation computer system
- 3.2 Sensors and actuators
- 3.3 Representation of process data in automation computers
- 3.4 Input/ output of analog signals
- 3.5 Input/ output of binary and digital signals
- **3.6 Field bus systems**

Motivation for the introduction of a field bus system

Weaknesses of conventional connection techniques:

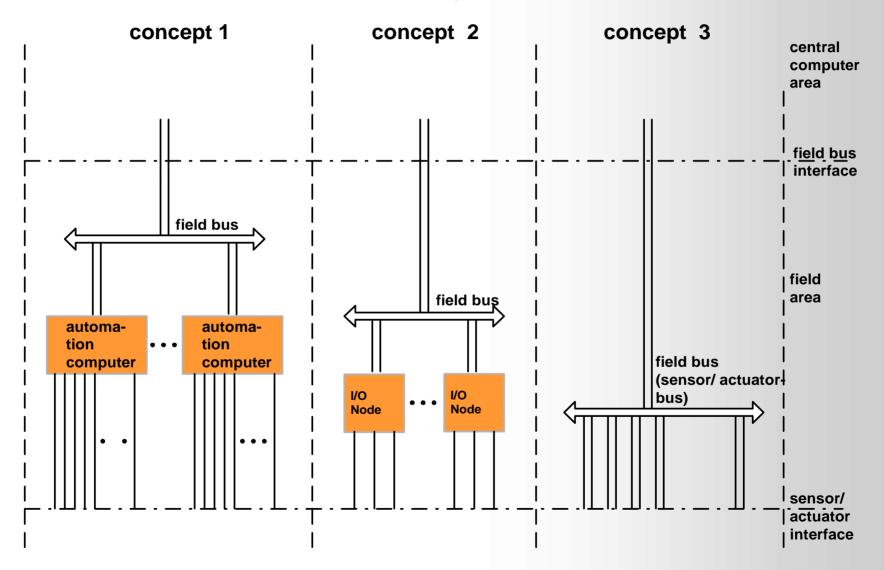
- 1 line per component is very consuming
- inflexible in modification and amplification
- Use of serial bus systems for communication between the sensors/ actuators and the automation computer system in order to reduce planning and installation costs

Application fields:

- plant automation
- production automation
- automobile electronics (control and monitoring)

Requirements on field bus systems

Differentiation between general requirements as


- Reliable communication under all environmental conditions
- Simple handling through maintenance staff
- Simple and robust connection technique
- Intrinsic safety in explosive areas

Application-oriented requirements as

- Number of input/output signals,
- Complexity,
- "Granularity",
- Plant extension,
- Real-time requirements.

lerminology	
Field area:	That part of the automation system that is spatially close to, or in direct connection with, the technical process
Field devices:	Measuring instruments, switch gears, controlling devices, that interact directly with the technical process
Field bus systems:	Serial data communication systems for the data exchange within the field area. Special requirements on the security of the data transfer: data integrity, EMC (Electromagnetic Compatibility)

Field bus systems	
Examples I	Manufacturer or main application area
– AS-Interface	11 actuator/sensor manufacturers, simple interface of binary field devices
– INTERBUS-S	Phoenix Contact Employment in manufacturing automation
– PROFIBUS (Process Field Bus)	"cooperative project field bus" European field bus standard
- Foundation Fieldbus	Field bus Foundation American field bus standard
 – FIP (Flux Information Process bus) 	French - ital. Consortium French field bus standard
– CAN	BOSCH - main field of application in automotive industry
 – EIB (European Installation Bus) 	Manufacturer of electric installations Building automation

Kinds of bus access methods

Bus access methods = rules for the transmission of messages

- Deterministic bus access
 - determined methods for transmission rights
 - predictable response time

E.g.: master/slave-method, Token-Passing method, TDMA method

- Random bus access
 - permanent monitoring of the bus
 - event driven communication
 - low/middle bus load
 - non-predictable response time

E.g.: CSMA method (CSMA/CD, CSMA/CA)

Master/slave method

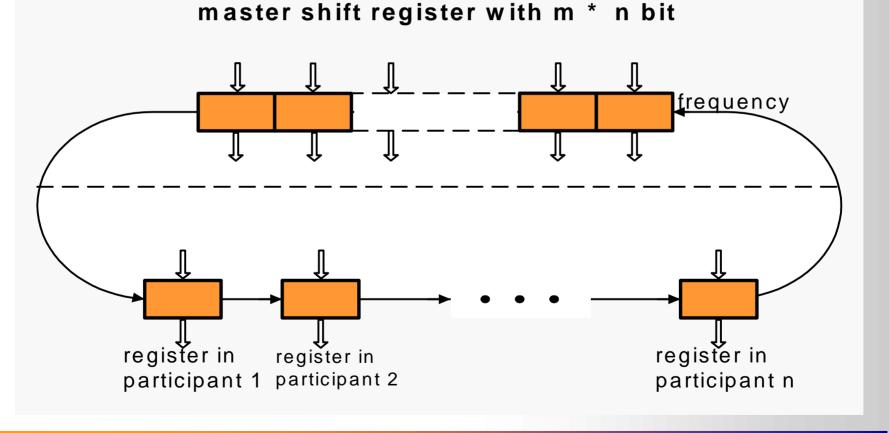
- Principle
 - Superordinate bus participant (master) controls bus access
- Advantages
 - simple organization
 - guaranteed maximal response time
- Disadvantages
 - maximal latency time is proportional to the amount of bus participants
 - in case of master failure there is no communication possible

Examples: AS-Interface, Bit-bus, Profibus

IA

Token-Passing-Method

Passing on of the Token (transmission right) from participant to participant after a maximal time span


Different kinds of Token-Passing-methods

- Token Bus
 - Line topology
 - Logical sequence of participants
- Token Ring
 - Ring topology
 - Sequence of transmission rights according to physical sequence
- Advantages: + good, predictable real-time behavior
 - + very good high load suitability
- Disadvantages: long delay times in case of occurring errors
 - supervision of the token passing
 - re-initialization after loss of token

Example: Profibus

TDMA- Method (1)<u>Time Division Multiple Access</u>

- Within a period (TDMA-cycle) each participant is assigned one or several time slots of determined length
- Principle of distributed shift registers

TDMA- Method (2)

Advantages

- short, constant cycle time
- low protocol overhead

Disadvantages

- synchronization of participants necessary
- not suitable for autonomous participants
- low flexibility, no dynamic adaptation

Example: INTERBUS-S

Method with random bus access

CSMA-Method

<u>Carrier</u> <u>Sense</u> <u>Multiple</u> <u>A</u>ccess

– Principle:

Each participant has bus access without explicit broadcasting right dispatching. (Multiple Access)

- Expiration of a transmission procedure:
 - 1) each participant checks if bus is free/occupied (carrier sense)
 - 2) if bus is free, it starts transmission
 - 3) in case of collisions, try transmission once again
- Different kinds of the CSMA procedure:
 - CSMA-CD (Collision Detection)
 - CSMA-CA (Collision Avoidance)

CSMA/CD - Method (Collision Detection)

- Recognition of collisions through data comparison
- Transmission repetition after participant specific waiting period

Advantages

- low bus load
- short latency time in low load situation

Disadvantage

long waiting periods in high load situation

CSMA/CA-Method (Collision Avoidance)

Avoidance of collisions through priority rules

Priority rules

Address-Arbitration

Participant with lowest or highest address asserts in case of

simultaneous attempts of transmission.

Example: CAN-Bus

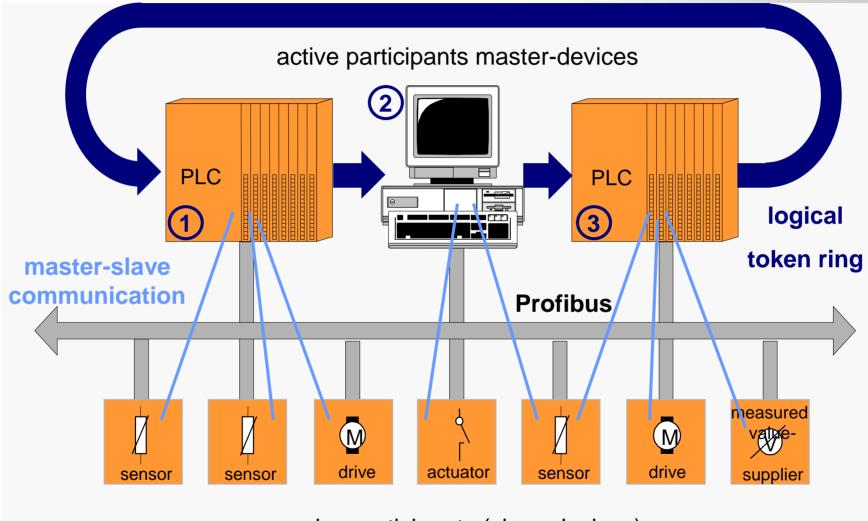
Time span assignment

After the completion of a transmission participant specific waiting time

PROFIBUS

- Field bus family
 - PROFIBUS DP
 - PROFIBUS FMS
 - PROFIBUS PA

(Decentralized Periphery) (Field Message Specification) (Process Automation)


- Distinction of master and slave participants
- Master participants (active participants)
 - Transmission of messages without request in case of Token possession

Token-Passing-Method for active participants

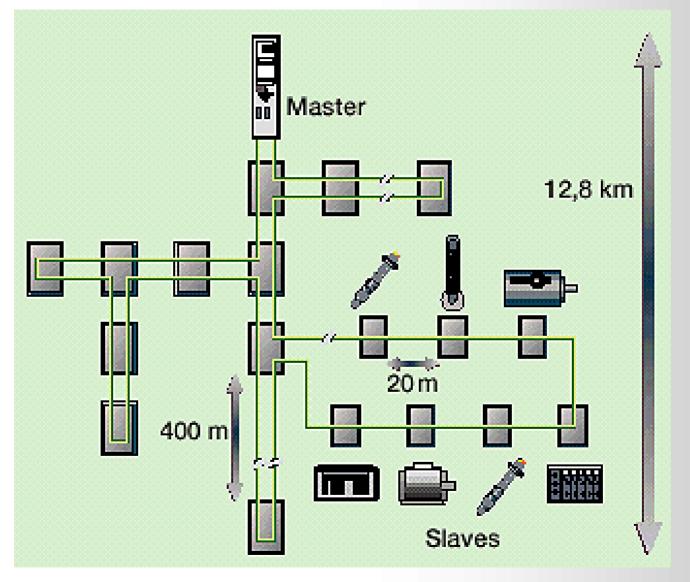
- Slave participants (passive participants)
 - No Token possession possible
 - Acknowledgement of messages
 - Message transmission on request

Master-Slave-Method for the communication with passive participants

Hybrid access method in the Profibus

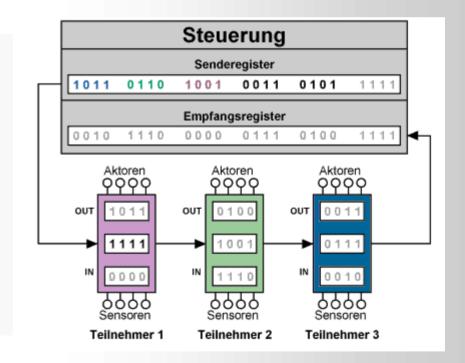
passive participants (slave devices)

Interbus-S


- Objective:

Transfer cyclically resulting data in the sensor-actuator-area without large overhead.

- Topology
 - active ring
 - Master-Slave method, fixed telegram length, deterministic ring
 - transfer rate: 500 kBits/s
 - max. 4096 I/O-points
 - extension of the bus: 400 m (between 2 far bus users)
 - total extension 13 km
- Physical addressing


The assignment of the data to the single participants is not carried out via the award of a bus address but automatic by the physical placement of the participants in the system

Example of an Interbus configuration

Principle of the shift register

- The Interbus is a closed shift register ring
- The information flows only in one direction
- The information is shifted through the complete ring, one bit after another

[ref.: Interbus ONLINE-Seminar, www.interbus.com]

Protocol

The data are lying in the send register ready for the participants (TN1, TN2 and TN3).

At the beginning of the data chain stands the loopback, at the end the FCS and Control

Application areas of CAN (<u>Controller Area Network</u>)

Developed by Bosch/Intel for the application in automobile industry

- Airbag
- ABS
- Motor management
- Air conditioning systems

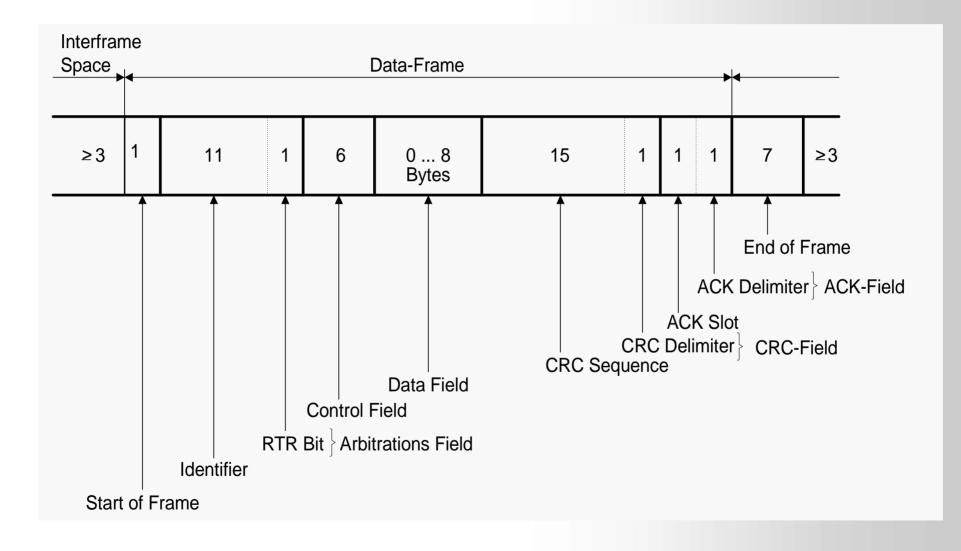
Building instrumentation and control

- elevator control
- supervision
- alarm systems
- air-conditioning system

Industrial automation

- process engineering
- machine tools

Characteristics of CAN


- Message oriented addressing
 Several objects can be located on one node. The object is addressed not the node.
- Multi-master bus access method
- In case of access conflict: bus arbitration according to priority through non-destroying, bit-wise arbitration according to CSMA/CA Method
- Short length of messages (0...8 byte)
- Transmission rate up to 1Mbit/s (of a maximum bus length of 40m)
- Various error recognition mechanisms
- Self-test through error counter
 Does a node cause too many errors it uncouples itself from the bus step by step.

CAN for environments with heavy electromagnetic disturbances

Interfere	ence detection mechanism	
_	Bit stuffing and de-stuffing. After 5 bits with the one bit of the opposite logic state is added. stuffing by the sender de-stuffing by the receiver	same logic state
_	15 BIT CRC (cyclic redundancy check) cyclic binary code with 64 message digits 15 control digits Hamming distance $d = 6$ ð Residual error probability	P _{RE} = 4.7 x 10 ⁻¹⁶ Ethernet P _{RE} = 10 ⁻⁷
-	Bus level check simultaneous backward reading	

Message frame protection checking of the frame for correctness

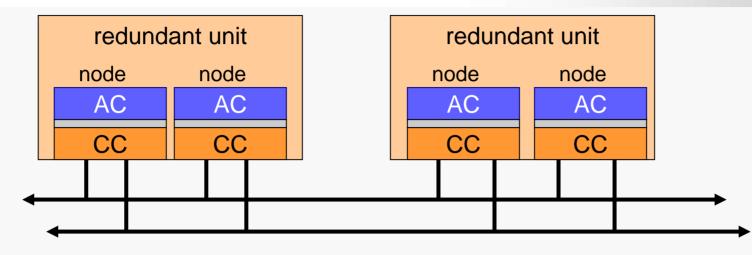
Data frame

IA

Principle of the time control

Time control: Actions are triggered by progression of time

Advantages of the time control


- Determinism
 - Safety properties easier to verify
- Synchronization of the applications on different nodes
 - Coupling of redundancies for the realization of fault tolerance
 - Distribution of a closed effect chain for the realization of distributed control applications

è Use in safety critical areas e.g. X-by-wire

Disadvantages of the time control

- inflexible to unexpected events
- inflexible to additional expansions and changes of the system

Construction of a time controlled architecture

AC: application controller

CC: communication controller

- Distributed system (cluster): Set of nodes which communicate via a bus system
- Static hardware redundancy: two or more nodes are doing the same task
- Bus system is also constructed with redundancy

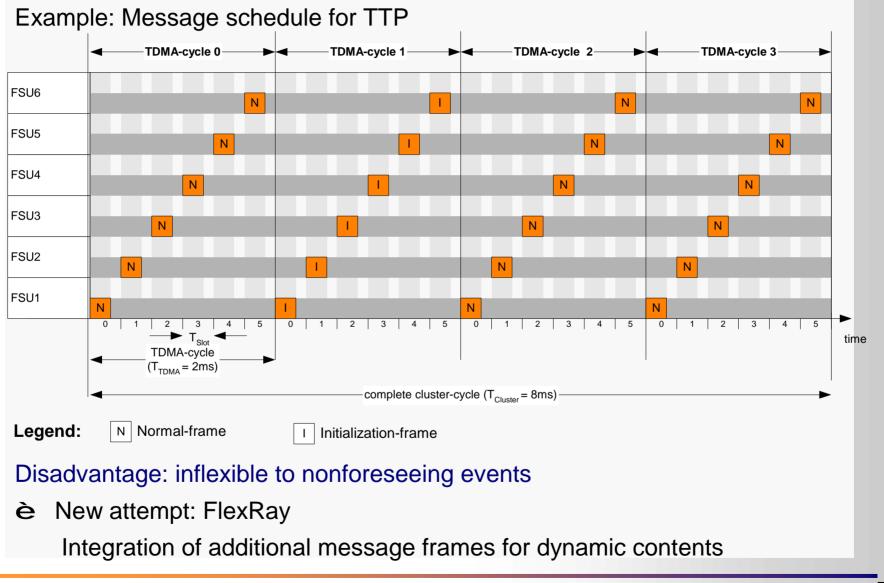
Properties of the time controlled communication system

Synchronization:
 All bus users refer to a global clock

– Time slot method:

Every bus participant has access to the bus at a definite time interval determined before

– Static messages scheduling


The sending time slots are determined statically before runtime

- Integrated network management: Recognizing a node failure, integration of nodes
- Redundancy management:
 Every arbitrary single fault is tolerated

Examples:

TTP:TU Wien, TTTechFlexRay:FlexRay-Consortium (BMW, DC, Bosch, Motorola, Philips)

Message schedule

Your task is to design a level sensor for a water tank.

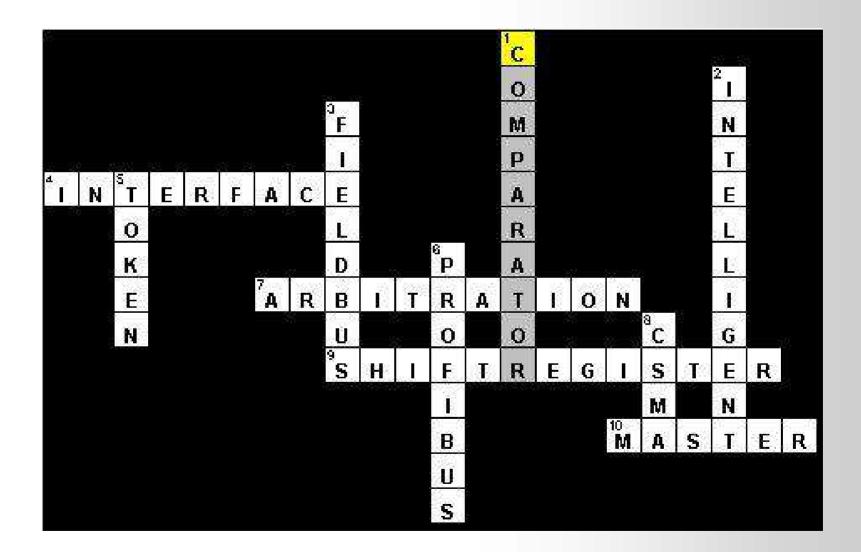
Which parameters can be used to determine the level of a tank? Which type of sensor element could you use to create such a sensor ?

- Measurement via distance:
 - potentiometer circuit
 - ultrasonic sensor
 - capacitive sensor
- Measurement via pressure:
 - pressure tin with diaphragm and strain gauge
 - pressure tin with piezoelectric element
- Measurement via weight:
 - balance using a force sensor (strain gauge or piezoelectric element)

The control of a motor's rotation speed has to be made. For that, the incoming current and the motor's rotation will be measured by an inductive sensor and a light barrier, respectively. In case that the incoming current is to high, the motor has to be automatically shut down through a switch.

Which kinds of process signals can you identify?

- The measurement of the incoming current with an inductive sensor yields a analog process signal.
- The measurement of the motor's rotation with the light barrier yields a pulse shaped process signal.
- The shutdown command represents a digital process signal.


The mean value converter is an analog to digital converter. Which of the following statements do you agree?

- f[…] The value in the middle of an interval is sampled every time.
- Ü Error voltage with frequency of the supply voltage is always suppressed.
- f^{...} The converter can only be used for fast changing signals.
- **Ü** Every time a complete period of the supply net frequency is integrated
- Ü A comparatively low effort is necessary for the technical realization.
- Ü It is a time discrete method.

Which of the following statements regarding to deterministic / random bus access do you agree?

- using a deterministic bus access there is a fixed method for the access of a participant
- f using a random bus access each participant is able to write on the bus every time
- Ü using a deterministic bus access definite statements regarding to the response behavior are possible
- f · a deterministic bus access allows faster response times
- f^{...} the token-passing method is a method with random bus access
- f using the random bus access a concurrent write process of several participants onto the bus always results in a destruction of the transmission

Crosswords to Chapter 3

Crosswords to Chapter 3

Across

4	Connection between systems (9)	
7	Process to avoid data package collision on CAN bus (11)	
9	Principle of data transmission in the Interbus-S (5,8)	
10	Element with control rights in a deterministic bus access method. (6)	

Down

- **1** Circuit for comparison of currents. (10)
- 2 Term used for sensors with integrated connection to bus system, selfcalibration and self-test. (11)
- **3** Communication system for the data exchange in the field area. (5,3)
- **5** Specific message to assign the right to send messages (5)
- **6** Bus system with an hybrid communication (8)
- 8 Method with random bus access (4)