§ 2 Automation Device Systems and Structures

- 2.1 Automation Computers
- 2.2 Centralized and Decentralized Structures
- 2.3 Automation Hierarchies
- 2.4 Distributed Automation Systems
- 2.5 Automation Structures with Redundancy

Chapter 2 - Learning targets

- to know the different automation computers
- to know what is the special of the mode of operation of a PLC
- to be able to differ between centralized and decentralized structures
- to recognize combinations of automation system structures
- to know automation hierarchies and their requirements
- to understand what distributed automation systems are
- to know what the basic topologies of communication are
- to be able to differ between an open and a proprietary communication system
- to know what is meant by redundancy
- to know kinds of hardware redundancy and to be able to characterize them
- to be able to explain what is meant by diversity

§ 2 Automation Device Systems and Structures

2.1 Automation computers

- 2.2 Centralized and decentralized structures
- 2.3 Automation hierarchies
- 2.4 Distributed automation systems
- 2.5 Automation structures with redundancy

Situation (1)

- Programmable Logic Controllers since 1972
- Influenced by components and technologies
- Dependent on the task
- Beginning of the software

Increase of the functionality and efficiency of the programmable logic controllers

1980	:	2	kByte	
1990	:	20	kByte	
2000	:	2000	kByte	

Situation (2)

- Target groups
 - user without computer science studies
 - "electrician"
- Target for the use of PLCs
 - replace contactor/relay
 - increase reliability
 - reduce costs
- Target for the PLC languages
 - to describe functions in known representations
 - **ú** ladder diagram (derived from the circuit diagram)
 - ú function plan (derived from the logic plan)
- è Standardization of the development of PLC systems

IEC 1131 DIN EN 611131

Block diagram of the hardware structure of a PLC

Cyclic operation of a PLC

Features of PLC

Advantage:	simple programming through cyclic operational mode
Disadvantage:	maximum reaction time on events in the technical process
	is equal to two program cycles

Program execution time:

- cycle time is not constant
- 1 ms per 1000 instructions

• standard micro processor

highly integrated components

employment for mass products

- data memory / program memory
- bus interfaces
- process signal interfaces
- programming with development system
- short word length
- extremely low price
- good reliability and long life span
- high requirements regarding environmental conditions

temperature, humidity

beginning at: 1- 10 €

Simplified block diagram of a micro controller

World market for microcontrollers

Manufacturers:

Intel, Motorola, National Semiconductor, Toshiba, Infineon, Mitsubishi

- World-wide increasing market
- Increasing tendency to 16-/32bit microcontroller and specific digital signal

processors

Worldwide Microcontroller Shipments Forecast

Differentiation

– Microprocessor

processor on a micro electronic chip

– Microcomputer

all components on a micro electronic chip i.e., processor,

memory, interface to periphery

– Microcontroller

automation computer or an automation computer

system on one chip

Basic terms

CPU = Central Processing Unit	micro processor
-------------------------------	-----------------

RAM = Random Access Memory

data memory

EPROM/PROM/ROM = Erasable/ Programmable/ Read Only Memory

fixed memory

I/O = parallel or serial input/output components

process and data periphery

Counter/Timer = generation of clock pulses

Interrupt Controller = handling of hardware interrupts

Industrial PC (IPC)

- Pluggable circuit boards for connection of
 - electrical process signals
 - optical process signals
 - bus systems
- Programming in high-level language
- Use of real-time operating systems
 - as single operating system
 - in addition to standard operating systems

Operational areas of industrial PCs

- Process visualization
- Process evaluation and monitoring
- Superordinated control tasks (control room tasks)

Environmental conditions

- Harsh environmental conditions
 - temperature variations
 - shocks and vibrations
 - dust and humidity
 - electrical or electromagnetic disturbances
- Protective measures in industrial PCs (IPC)
 - vibration absorbing disk drives
 - high quality of integrated components
 - special protecting case

Protection forms of industrial PCs with IP index

1st digit	Protection against solid objects	2nd digit	Protection against water impact	
0	No protection	0	No protection	
1	Hand contact impossible (50mm objects)	1	Protection against vertical falling drops/ condensation	
2	Finger contact impossible (12mm objects)	2	Protection against drops wit a falling angle of 15°	
3	Wire contact impossible (2.5mm objects)	3	Protection against rain fall up to 60°	
4	Fine wire contact impossible (1.0mm objects)	4	Protection against spray from all directions	
5	Protection against harmful dust	5	Protection against jets of water from all directions	
6	Complete dust protection	6	Protection against water floods (during heavy sea)	
		7	Protection against water impact up to a depth of 1m	
		8	Protection against persistent water impact for depths larger than 1m	

IP = Ingress Protection

Pure IPC solution

- acquisition of process data
- execution of control program under real-time conditions
- interface to the user

Advantages of a pure IPC-solution

- better scalability of hardware
- many operating systems available
- wide spectrum of programming languages available
- open system for the integration of ready-made subsystems

Structure of a PLC-IPC system (chalkboard writing)

Process control system (PCS)

- Distributed computer systems, connected via bus systems
- Interconnection with PLC computers
- Usage of prefabricated program modules developed by the Manufacturer of the PCS
- Configuration by operator

Complete solutions from a single manufacturer

- No compatibility problems
- Uniform process operation and monitoring
- High availability
- Defined responsibility
- Long lifetime

Fields of application of process control systems

- Power plant automation
- Process engineering
- Building automation
- Production engineering

Components of a PCS

- Operation and monitoring components
- Field level components
- Communication systems
- Engineering tool

Schematic structure

2.1 Automation computers

IA

Operation and monitoring components

- Functions:
 - create/modify recipes/batch processes
 - change current values
 - communication with the process
 - process alarm messages and operating requirements
 - process visualization
 - interface to data base system for process data logging
- Realization:
 - PC, IPC, Workstation
 - Windows 95, Windows NT, Unix

Components at the field level

- In-house developments of the control system manufacturer (proprietary solution)
- Setup
 - automation computer : PLC, IPC
 - distributed periphery
 - field devices: sensors, actuators

reaction time

Bus systems	
Operation level:	standardized Ethernet bus
Process and field level:	Field bus, e.g. Profibus, H1-Bus, Modbus, Interbus-S
Lowest field level :	fast actuator-sensor buses

Engineering

- Tasks
 - Configuration
 - Programming
 - Maintenance
- Tools
 - Graphical tools (IEC 1131)
 - Standardized libraries with components
 - Powerful editors

Control system manufacturers and their products

Manufacturer	Name of the product	Remarks		
ABB	AdvantOCS	Company-specific field bus		
	AdvaSoft	For small systems		
	Procontrol P	Power plant automation		
EB Hartmann & Braun	Symphony	Supports connection to operation level, remote I/O System automation for large systems		
	Contronic E	Power plant automation, for large installations		
	Contronic P	Process engineering, extension up to 12km		
Foxboro- Eckardt	I/A Serie- System	Process engineering, field level with PCMCIA- technology		
Siemens	SIMATIC PCS 7	Process engineering, user interface based on Windows 95 and Windows NT. Extensive hardware supply. Field bus: Profibus. Connection to operation level possible.		
	Teleperm M	Process engineering, common old bus system (CS 275). Migration from Teleperm M to SIMATIC PCS 7 possible.		
	Teleperm XP	Power plant automation, open communication, extensive hardware supply.		
Honeywell	PlantScape Process engineering, open system, based windows NT, supports remote I/O. Connect operation level possible.			
	TDC 3000	Process engineering, has several process buses with different data transmission. MODBUS is supported.		

IA

§ 2 Automation Device Systems and Structures

- 2.1 Automation computers
- **2.2** Automation structures
- 2.3 Automation hierarchies
- 2.4 Distributed automation systems
- 2.5 Automation structures with redundancy

Structure of the technical process

- technical process as an entity
 - e.g.: drilling process with a drilling machine
- technical process consisting of sub-processes
 - e.g.: manufacturing of a gear

Structure of automation devices

- locally concentrated
- locally distributed

Functional structure of automation systems

- = allocation of automation functions on the automation devices
- functionally centralized
- functionally decentralized

Functionally centralized automation structure

Functionally decentralized automation structure

offerent combinations of automation structures						
		technical process seen as an entity (centralized process structure)		technical process segmented into sub-processes (decentralized process structure)		
		locally centralized deployment of automation devices	locally decentralized deployment of automation devices	locally centralized deployment of automation devices	locally decentralized deployment of automation devices	
	functional structure	functionally centralized automation structure	CCC	CDC	DCC	DDC
	func stru	functionally decentralized automation structure	CCD	CDD	DCD	DDD

\square

notation of the different structures: C = centralized / D = decentralized

Criteria for a comparison of automation structure features

- Costs for devices, cabling, software, maintenance and service
- Availability of parts in case of hardware failure or software faults
- Flexibility in case of modifications
- Coordination of sub processes and optimization of the overall process
- Operability/usability

Comparison of reliability during operation of technical processes

Generally weak coupling

- No complete failure if two or more automation units fail
- Operational reliability is higher in the case of a functionally decentralized structure than the deployment of a central process computer

Decentralized structure

- + flexibility in case of modifications
- + coordination of sub-processes
- + optimization of the overall process
- additional effort for the communication between the individual automation units
- 0 operability and user-friendliness
- + localization of malfunctions
- + higher transparency

Evaluation of automation structures regarding the criteria

C = D =	centralized structure decentralized structure	_
CCC	typical for the automation of small devices	product
CDC	lower cabling costs as in CCC	automation
DCC	unfavorable regarding availability, maintenance, cabling costs])
DDC	unfavorable regarding availability and flexibility	
CCD	favorable regarding maintenance and flexibility, unfavorable regarding cabling	plant
CDD	favorable regarding flexibility, availability, cabling and transparency	automation
DCD	favorable regarding availability, maintenance, unfavorable regarding cabling costs	
DDD	favorable regarding flexibility, availability, cabling and transparency	J automotive electronics
ðAs	 functional structure local structure of the automation devices structure of the technical process decentralized as possible, as centralized as r 	ecessary

§ 2 Automation Device Systems and Structures

- 2.1 Automation computers
- 2.2 Centralized and decentralized structures
- 2.3 Automation hierarchies
- 2.4 Distributed automation systems
- 2.5 Automation structures with redundancy

Allocation of automation functions to the process management levels

- decentralized automation units perform tasks of the field level, high requirements on availability
- coordination units perform the automation functions of the process level, as well as the coordination of sub-processes, optimization, process monitoring and safety functions
- master units perform the tasks of the operational level

Prerequisites for the realization of an automation hierarchy

- segmentation of the technical process into sub-processes
- deployment of intelligent automation units
- communication system between automation units

Depending on the size of the company and the extent of the technical process, sub-levels can be added or levels can be joined.

Example

Realization of an automation hierarchy with a bus-oriented distributed process computer system

§ 2 Automation Device Systems and Structures

- 2.1 Automation computers
- 2.2 Centralized and decentralized structures
- 2.3 Automation hierarchies
- **2.4 Distributed automation systems**
- 2.5 Automation structures with redundancy

Objectives when using distributed automation systems

- High reliability through fault tolerance
 - failure of a decentralized computer does not lead to an overall failure
 - isolation of the fault by means of reconfiguration
- Increase of availability through rapid maintenance and service
 - mutual control with fault diagnostics
- Mutual support during peak load times
 - automatic adaptation of the task distribution
 - reduction of the standby capacity of the individual units
- Simple upgradeability

Realization when using distributed automation systems

Connection of decentralized automation units with a superordinated computer via a communication system

no hierarchy

Difference to the automation hierarchy

- In automation hierarchy, units only communicate with the level directly above it
- Only the process-related information tasks are perceived as decentralized

127

Selection of a communication system (1)

- Low cabling costs
 essential costs: more cable cause more interferences in the wires
- Standardized interfaces regarding
 - plugs, cables (mechanical)
 - voltage level (electrical)
 - transmission protocol (logical)
- Flexibility in case of modifications
- Low requirements on the communication partner
 - demand on memory size
 - demand on computation power
- High availability and reliability

Selection of a communication system (2)

- Error free transfer of information
 - utilization of test bits
 - acknowledgment of correct reception
- Achievement of high data transmission rates
- Short reaction times on transmission requests
- Coupling of various communication partners

Problem: Definition of priorities in the realization of the partially contradicting criteria

e.g.: high availability and reliability through redundant bus systems can cause high cabling costs

Basic topologies of communication star topology

failure of the central unit causes failure of the communication system

ring topology

each unit can only transmit messages to its direct neighbors

net topology

parallel information transmission, short reaction time, many interfaces, high cabling costs

bus topology

only one participant at a time is able to send, simultaneous information reception from all participants

Parallel bus

- addresses, data and control signals are transmitted parallel
- bundles of wires

distance: up to 20 m

Serial bus

- bits of a message are transmitted one after another
- transmission time is longer than that of parallel bus
- lower cabling costs
- increase of reliability
- flexibility regarding the transmission protocol

distance : 20 m up to 15 km

Types of communication systems

Open communication system
 OSI = Open-System-Interconnection

Manufacturer-specific communication system (proprietary systems)
 CSI = Closed-System-Interconnection

ISO IS 7498

layer 7:	Application layer	 basic services standard applications application-specific
layer 6:	Presentation layer	 language adjustments (e.g., between ASCII & EBCDIC) data encoding data decoding
layer 5:	Session layer	 establish control stop communication
layer 4:	Transport layer	 route parallelism packet retransmission packet sorting
layer 3:	Network layer	 net protocols data addressing data switching routing
layer 2:	Data link layer	 error detection/ handling access mode synchronization
layer 1:	Physical layer	 transmission medium type of coding interface topology

Tasks of ISO/OSI- layers

§ 2 Automation Device Systems and Structures

- 2.1 Automation computers
- 2.2 Centralized and decentralized structures
- 2.3 Automation hierarchies
- 2.4 Distributed automation systems
- **2.5** Automation structures with redundancy

Types of redundancy

Always: operating personnel monitoring parallel to process computer!

- Hardware redundancy
 - redundant hardware
- Software redundancy
 - redundant software
- Measured value redundancy
 - redundant measured value
 - dependent measured value
- Time redundancy

•

• multiple inquiry of the same measured value in certain intervals

Hardware and software redundancy implies a bigger effort

- higher availability
- safety-relevant systems

Objectives when using fault-tolerant structures

Design the systems in such a way that they are able to function as a whole even if faults occur in individual components.

Levels of fault-tolerance

- complete fault-tolerance
- reduced operational capacity

fail soft, graceful degradation

- transition to a safe state

fail-safe

fail operational

The principle of fault-tolerance

Construct a system with redundant modules (hardware and software) in order to maintain a functioning system in case errors occur.

Types of redundancy

- Static redundancy
 - all redundant modules are permanently in operation
- Dynamic redundancy
 - redundant modules are only used after a failure occurs
 - blind redundancy redundant modules do not act in fault-free cases
 - function-participating redundancy redundant modules run stand-by-functions in fault-free cases

Hardware redundancy

– Goal:

Detection of hardware failures

- Operation principle:
 m-of-n-redundancy
 - majority ruling
 - no faults, until multiple defects occur
- Realization of redundancy
 - double computer structures
 - triple computer structures

139

Double computer structures with static redundancy

Double computer structures with dynamic blind redundancy

Double computer structures with dynamic functionparticipating redundancy

Triple computer structures with static redundancy

Software redundancy

- Objective:

detection of errors in software

– Starting point:

software has errors

Redundancy measures for software existence of the same software makes no sense, failure of software is not the problem

- heterogeneous structure of program components
- the same input data must lead to the same results

Diversity software

Diversity = Heterogeneity of software with identical functionality

- independent development teams solve the same problem
- intentional development of different strategies, algorithms and software structures

Application and execution of diverse software components

- Redundant software alternatives are executed one after another and are compared with the help of a voter (not for real-time systems with high requirements on timeliness)
- simultaneous execution of redundant software components on redundant multi-computer systems
- cyclic alternation of diverse components

Comparison difficult

- Two algorithms with different processing times
- Both results can be correct even though their values might be different

Question referring to Chapter 2.4

The individual modules of a PLC are connected via a manufacturer specific bus. For the communication between field devices a field bus is often used.

Explain at this example the difference between an "open" and a "proprietary" communication system.

Answer

The PLC bus system is a proprietary communication system. This means, it is a manufacturer-specific system where only devices made by the same manufacturer can communicate with each other.

A field-bus system is an open communication system. Devices of different manufacturers can be connected with this system

Question referring to Chapter 2.4

There are some different topologies for a communication system. Which of the following statements do you agree?

Answer

- **\U016** the bus topology causes the lowest cable expense
- **f**^{..} the bus topology is faster than the net topology
 - a net topology is able to broadcast a larger amount of data in parallel than a bus topology
- ^f a bus topology has a shorter reaction time than a net topology
- f it is easier to expand a net topology than a star topology
- f^{...} a bus topology is only suitable for decentralized systems

Question referring to Chapter 2.5

In aircraft's important systems, variables are calculated more than once. Which kind of system would you use for this application: a double or a triple computer system with static redundancy ?

Answer

A double computer system with static redundancy is not fault-tolerant. In case of a failure the system is shut down.

Therefore, a triple computer system has to be used. Because of the 2-outof-3 decision, this type of system is fault-tolerant.

Crosswords to Chapter 2

Crosswords to Chapter 2

Across

2	Communication medium (3)
3	Heterogeneity of software with identical functionality (9)
7	Physically distributed (13)
9	One chip computer (15)

Down

I Preservation of the functionalit	/ despite occurrence of errors.	(5,9)
------------------------------------	---------------------------------	-------

- 4 Abbreviation for computers specially designed for usage in industrial fields. (3)
- 5 Duplication of hardware or software elements with the same functionality. (10)
- 6 Simultaneous transmission of data on several lines. (8)
- 8 Time impulse generator (5)