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- Fault Detection,
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- Qualitative Evaluation (FMEA, FTA)
- Examples
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Motivation for Dependable Systems

Systems - if not working properly in a particular situation - may cause

-  large losses of property or money

-  injuries or deaths of people

To avoid such effects, these “mission-critical” systems must be designed specially so as

to achieve a given behaviour in case of failure.

The necessary precautions depend on

- the probability that the system is not working properly

- the consequences of a system failure

- the risk of occurrence of a dangerous situation

- the negative impact of an accident (severity of damage, money lost)
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Application areas for dependable systems

Space Applications Launch rockets, Shuttle, Satellites,
Space probes

Transportation Airplanes (fly-by-wire), Railway signalling, Traffic control, Cars
(ABS, ESP, brake-by-wire, steer-by-wire)

Nuclear Applications Nuclear power plants, Nuclear weapons, Atomic-powered ships
and submarines

Networks Telecommunication networks, Power transmission networks,
Pipelines

Business Electronic stock exchange, Electronic banking, Data stores for
Indispensable business data

Medicine Irradiation equipment,
Life support equipment

Industrial Processes Critical chemical reactions,
Drugs, Food
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Market for safety- and critical control systems
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source: ARC Advisory group, 2002, Asish Ghosh

increases more rapidly than the rest of the automation market
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Definitions: Failure, Fault

A mission is the intended (specified) function of a device.
A failure (Ausfall, défaillance) is the non-fulfilment of this mission. 

("termination of the ability of an item to perform its required function").

failures may be:
 • momentary = outage (Aussetzen, raté)
 • temporary = need repair = breakdown (Panne, panne) - for repairable systems only -

 • definitive = (Misserfolg, échec)
A fault  (Fehler, défaut) is the cause of a failure, it may occur long before the failure.
These terms can be applied to the whole system, or to elements thereof.

latency outage

function

fault

repair
manifestation

on off on



9.1 Dependability - Overview7/40Industrial Automation

Fault, Error, Failure

Fault: missing or wrong functionality
– permanent: due to irreversible change, consistent wrong functionality

(e.g. short circuit between 2 lines)
– intermittent: sometimes wrong functionality, recurring

(e.g. loose contact)
– transient: due to environment, reversible if environment changes

(e.g. electromagnetic interference)

Error: logical manifestation of a fault in an application
(e.g. short circuit leads to computation error if 2 lines carry different signals)

Failure: to perform a prescribed function
(e.g. if different signals on both lines lead to wrong output of chip)

failureerrorfault
may
cause

may
cause
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Hierarchy of Faults/Failures

fault → failure component level, e.g. transistor short circuited

fault → failure subsystem level, e.g. memory chip defect

fault → failure system level
e.g. computer delivers wrong outputs
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Types of Faults

Computers can be affected by two kinds of faults:

physical faults

(e.g. hardware faults)

design faults

(e.g. software faults)

"a corrected physical fault can occur
again with the same probability."

"a corrected design error
does not occur anymore"

Faults are originated by other faults (causality chain).

Physical faults can originate in design faults (e.g. missing cooling fan)

 < definition ! > 

Most work in fault-tolerant computing addresses the physical faults, because it
is easy to provide redundancy for the hardware elements. 

Redundancy of the design means that several designs are available. 
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Random and Systematic Errors

Systematic errors are reproducible under given input conditions
Random Error appear with no visible pattern.

Although random errors are often associated with hardware errors and
systematic errors with software errors, this needs not be the case

Transient errors , firm errors, soft errors,.... do not use these terms
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Example: Sources of Failures in a telephone exchange

software

15%

hardware
20%

handling

30%

35%

unsuccessful 
recovery

source: Troy, ESS1 (Bell USA)
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Basic concepts

Basic concepts
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Reliability and Availability

good bad up down
failure

repair

time

good

time
up up up

state state

MTTF

Reliability Availability

definition: "probability that an item will
perform its required function in the specified
manner and under specified or assumed
conditions over a given time period"

repair

expressed shortly by its 
MTTF: Mean Time To Fail

definition: "probability that an item will
perform its required function in the specified
manner and under specified or assumed
conditions at a given time "

failure

down

MDT

bad
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Failure/Repair Cycle

system works system no longer works

MTTF

system works

MUT
(MTTF)

system works

MUTMDT
(MTTR)

MDT

repair repair

MTBF

With repair:

MTTF: mean time to fail

MTTR: mean time to repair ~ MDT (mean down time)

MTBF: mean time between failures, (*n'est pas "moyenne des temps de bon fonctionnement« )

MTBF = MTTF + MTTR
if MTTR « MTTF: MTBF ≈ MTTF

Without repair:

time

timedown
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Redundancy

Increasing safety or availability requires the introduction of redundancy (resources which
are not needed if there were no failures).

Faults are detected by introducing a check redundancy.

Operation is continued thanks to operational redundancy (can do the same task)

Increasing reliability and maintenance quality increases both safety and availability

detected
fault
(don´t know
about failure)

switch to red:
no accident risk (safe)
decreased traffic performance

switch to green:
accident risk
traffic continues (available)



9.1 Dependability - Overview16/40Industrial Automation

Availability and Repair in redundant systems

up

impairedfailure

repair
2nd failure

up

When redundancy is available, the system does not fail until redundancy is
exhausted (or redundancy switchover is unsuccessful)

unsuccessful switchover or common mode of failure

down
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Maintenance

"The combination of all technical and administrative actions, including supervision actions intended to
retain a component in, or restore it to, a state in which it can perform its required function"

Maintenance takes the form of

- corrective maintenance: executed when a part actually fails (repair)
"go to the garage when the motor fails"

- preventive maintenance: restoring redundancy
and in particular restore degraded parts to error-free state

"go to the garage to change oil and pump up the reserve tyre"

- scheduled maintenance (time-based maintenance)
"go to the garage every year"

- predictive maintenance (condition-based maintenance)
"go to the garage at the next opportunity since motor heats up"

preventive maintenance does not necessarily stop production if redundancy is available
"differed maintenance" is performed in a non-productive time.
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Differed maintenance

up

MTBR

up

MTTFcomp

MTTR MTTR

down downup

failure
degraded

state

unscheduled
maintenance

Redundancy does not replace maintenance:
it allows to differ maintenance to a convenient moment 
(e.g. between 02h00 and 04h00 in the morning).

The system may remain on-line or be taken shortly out of operation.

The mean time between repairs (MTBR) expressed how often any component fails

The mean time between failure concerns the whole system. 

Differed maintenance is only interesting for plants that are not fully operational 24/24. 

preventive
maintenance
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Preventive maintenance

In principle, preventive maintenance restores the initially good state at regular intervals.

This assumes that the coverage of the tests is 100% and that no uncorrected aging 
takes place. 
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Safety

we distinguish:

•hazards caused by the presence of control system itself:
explosion-proof design of measurement and control equipment
(e.g. Ex-proof devices, see "Instrumentation")

•implementation of safety regulation (protection) by control systems
"safety"- PLC, "safety" switches
(requires tamper-proof design)
protection systems in the large
(e.g. Stamping Press Control (Pressesteuerungen), 
Burner Control (Feuerungssteuerungen)

•hazard directly caused by malfunction of the control system
(e.g. flight control)
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Safety

The probability that the system does not behave in a way considered as dangerous.

Expressed by the probability that the system does not enter a state defined as dangerous 

failure
dangerous

states

dangerous failure

safe (down)
statesrepairup

difficulty of defining which states are dangerous -
level of damage ? acceptable risk ?

damage

correct fault handling
not guaranteed

accidental event
in normal operation

no way back
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Safe States

Safe state
– exists: sensitive system
– does not exist: critical system

Sensitive systems
– railway: train stops, all signals red (but: fire in tunnel?)
– nuclear power station: switch off chain reaction by removing moderator

(may depend on how reactor is constructed)

Critical systems
– military airplanes: only possible to fly with computer control system

(plane inherently instable)
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Types of Redundancy

Structural redundancy (hardware):
Extend system with additional components that are not necessary to achieve the required
functionality (e.g. overdimension wire gauge, use 2-out-of-3 computers)

Functional redundancy (software):
Extend the system with unnecessary functions

–additional functions (e.g. for error detection or to switch to standby unit)
–diversity (additional different implementation of the required functions)

Information redundancy:
Encode data with more bits than necessary
(e.g. parity bit, CRC, 1-out-of-n-code)

Time redundancy:
Use additional time, e.g. to do checks or to repeat computation
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Availability and Safety (1)

Availability Safety

high availability increases 
production time and yield
(e.g. airplanes are aloft)

availability is an economical objective. safety is a regulatory objective

high safety reduces the 
risk to the process and its 

environment

The gain can be measured in 
additional up-time

The gain can be measured in 
lower insurance rates

availability depends on a 
functional redundancy  (which can 
take over the function) and on the 

quality of maintenance

safety depends on the introduction of 
check redundancy (fail-stop 
systems) and/or functional 

redundancy (fail-operate systems)

Safety and Availability are often contradictory (completely safe systems are
unavailable) since they share redundancy.
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Cost of failure in function of duration

losses (US$)
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Safety and Security

Safety (Sécurité, Sicherheit): 

Avoid dangerous situations due to unintentional failures
–failures due to random/physical faults
–failures due to systematic/design faults

e.g. railway accident due to burnt out red signal lamp

e.g. rocket explosion due to untested software (→ Ariane 5)

Security (Sécurité informatique, IT-Sicherheit): 

Avoid dangerous situations due to malicious threats
–authenticity / integrity (intégrité): protection against tampering and forging
–privacy / secrecy (confidentialité, Vertraulichkeit): protection against eavesdropping

e.g. robbing of money tellers by using weakness in software

e.g. competitors reading production data

The boundary is fuzzy since some unintentional faults can behave maliciously.

(Sûreté: terme général: aussi probabilité de bon fonctionnement, Verlässlichkeit)
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How to Increase Dependability?

Fault tolerance: Overcome faults without human intervention.

Requires redundancy: Resources normally not needed to perform the required function.
Check Redundancy (that can detect incorrect work)
Functional Redundancy (that can do the work)

Contradiction: Fault-tolerance increases complexity and failure rate of the system.

Fault-tolerance is no panacea: Improvements in dependability are in the range of 10..100.

Fault-tolerance is costly:
x 3 for a safe system,
x 4 times for an available 1oo2 system (1-out-of-2),
x 6 times for a 2oo3 (2-out-of-3) voting system

 

Fault-tolerance is no substitute for quality
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Dependability

goals
– reliability
– availability
– maintainability
– safety
– security

achieved by
– fault avoidance
– fault detection/diagnosis
– fault tolerance

(= error avoidance)

by error passivation
– fault isolation
– reconfiguration

(on-line repair)

by error recovery
– forward recovery
– backward recovery

by error compensation
– fault masking
– error correction

guaranteed by
– quantitative analysis
– qualitative analysis

(Sûreté de fonctionnement, Verlässlichkeit)
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Failure modes in computers

9.1: Overview Dependable Systems
- Definitions: Reliability, Safety, Availability etc.,
- Failure modes in computers

9.2: Dependability Analysis
- Combinatorial analysis
- Markov models

9.3: Dependable Communication
- Error detection: Coding and Time Stamping
- Persistency

9.4: Dependable Architectures
- Fault detection
- Redundant Hardware, Recovery

9.5: Dependable Software
- Fault Detection,
- Recovery Blocks, Diversity

9.6: Safety analysis
- Qualitative Evaluation (FMEA, FTA)
- Examples
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Failure modes in computers

Safety or availability can only be evaluated considering the
total system controller + plant.
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Computers and Processes

µC

µC µCµC

bus

Process
(e.g. power plant, chemical reaction, ...)

Distributed
Computer System

“Primary”
System

“Secondary”
System

Control, Protection
Monitoring,
Diagnosis

Environment

Availability/safety depends on output of computer system and process/environment.
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Types of Computer Failures

Breach of the specifications = does not behave as intended 

output of wrong data
or of correct data,but at undue time

missing output of correct data 

Computers can fail in a number of ways

integrity breach persistency breach

reduced to two cases

Fault-tolerant computers allow to overcome these situations.
 

The architecture of the fault-tolerant computer depends on the encompassed 
dependability goals
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Safety Threats

not recognized, wrong data, or correct 
data, but at the wrong time

if the process is irreversible
(e.g. closing a high power breaker,
banking transaction)

Requirement:
fail-silent (fail-safe, fail-stop) computer
"rather stop than fail"

no usable data, loss of control

if the process has no safe side

(e.g. landing aircraft)

depending on the controlled process, 

safety can be threatened by failures of the control system:

integrity breach persistency breach

Requirement:
fail-operate computer
"rather some wrong data than none"

Safety depends on the tolerance of the process against failure of the control system  
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continuous systems

F(nT) 

continuous systems are generally 
reversible.

tolerates sporadic, wrong inputs 
during a limited time (similar: noise)

tolerate loss of control only during a 
short time. 

do not tolerate wrong input. 
difficult recovery procedure

tolerate loss of control during a  
relatively long time (remaining in the 
same state is in general safe). 

require persistent control require integer control

modelled by differential equations, 
and in the linear case, by Laplace 
or z-transform (sampled)

modelled by state machines, Petri 
nets, Grafcet,....

n 

discrete systems

time

transitions between states are 
normally irreversible. 

Plant type and dependability
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Persistency/Integrity by Application Examples

safety

persistency

integrity

primary
systemsecondary

system
availability

railway signalling

airplane control

substation protection
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Protection and Control Systems

Control system:
Continuous non-stop operation
(open or closed loop control)
Maximal failure rate given in
failures per hour.

Control
+

–

Process state

Display

Process

Measurement

Protection

Protection system:
Not acting normally,
forces safe state (trip) if necessary
Maximal failure rate given in failures per
demand.
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Example Protection Systems: High-Voltage Transmission

substation

busbar

bay

line
protection

busbar
protection

Two kinds of malfunctions: 
An underfunction (not working when it should) of a protection system is a safety threat
An overfunction (working when it should not) of a protection system is an availability threat

power plant power plant

substation

to consumers
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Findings

Reliability and fault tolerance must be considered early in the development process,
they can hardly be increased afterwards.

Reliability is closely related to the concept of quality, its root are laid in the design process, 
starting with the requirement specs, and accompanying through all its lifetime. 
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Assessment

which kinds of fault exist and how are they distinguished

explain the difference between reliability, availability, safety in terms of a state diagram
 
explain the trade-off between availability and safety

what is the difference between safety and security

explain the terms MTTF, MTTR, MTBF, MTBR

how does a protection system differ from a control system when considering failures ?
 
which forms of redundancy exist for computers ?

how does the type of plant influence its behaviour towards faults ?



2006-06-14, HK

Dependability - Evaluation

Verlässlichkeitsabschätzung
Estimation de la fiabilité

Prof. Dr. H. Kirrmann
ABB Research Center, Baden, Switzerland

Industrial Automation
Automation Industrielle
Industrielle Automation

9.2



9.2 Dependability - Evaluation2/72Industrial Automation

Dependability Evaluation

This part of the course applies to any system that may fail.

Dependability evaluation (fiabilité prévisionnelle, Verlässlichkeitsabschätzung) determines:

•the expected reliability,

•the requirements on component reliability,

•the repair and maintenance intervals and

•the amount of necessary redundancy.

Dependability analysis is the base on which risks are taken and contracts established

Dependability evaluation must be part of the design process, it is quite useless once a
system has been put into service.
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9.2.1 Reliability definitions

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov models

9.2.5 Availability evaluation

9.2.6 Examples 
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Reliability

Reliability = probability that a mission is executed successfully 
(definition of success? : a question of satisfaction…)

Reliability depends on:
• duration (“tant va la cruche à l’eau….”, "der Krug geht zum Brunnen bis er bricht)) 
• environment: temperature, vibrations, radiations, etc... 

R(t)

laboratory

25º

85º

40º

vehicle85º

25º

time

1,0

1 2 3 4 5 6

Such graphics are obtained by observing a large number of systems, 
or calculated for a system knowing the expected behaviour of the elements.   

lim R(t)  = 0
t→∞
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Reliability and failure rate - Experimental view

Experiment: large quantity of light bulbs

remaining 
good bulbs

time

Reliability R(t): number of good bulbs remaining at time t divided by initial number of bulbs

mature

λ

infancy
aging

time

100%

t

 t + ∆t

R(t)

Failure rate λ(t): number of bulbs that failed in interval t, t+∆t, divided by number of remaining bulbs

 t



9.2 Dependability - Evaluation6/72Industrial Automation

Reliability R(t) definition

t→∞

R(t)

t

1

0

λ(t) = –
dR(t) / dt

R(t)

Reliability R(t): probability that a system does not enter a terminal state until time t,
          while it was initially in a good state at time t=0"

R(0) = 1;       lim  R(t) = 0

MTTF = mean time to fail =  surface below R(t)

MTTF =      R(t) dt
0

∞

t

λ(x) dx
0and: R(t) = e

–

Failure rate λ(t) = probability that a (still good) element fails during the next time unit dt.
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Assumption of constant failure rate

R(t)

λ(t)

t

bathtub
childhood
(burn-in)

aging

mature

MTTF = mean time to fail =  surface below R(t)

MTTF =      e -λt dt  =
0

∞

λ

1

R  (t+∆t) = R  (t) -  R  (t) λ(t)*∆t 

Reliability = probability of not having failed
until time t expressed:

by discrete expression

R  (t) = e -λt

by continuous expression simplified
when λ = constant

0

0.2

0.4

0.6

0.8

1

t

R(t) λ= bathtub

R(t)= e -0.001 t  (λ = 0.001/h)

MTTF

assumption of λ = constant is justified by
experience, simplifies computations significantly
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Examples of failure rates
To avoid the negative exponentials, λ values are often given in FIT (Failures in Time),

1 fit = 10-9 /h =

Warning: Design failures outweigh hardware failures for small series

These figures can be obtained from catalogues such as MIL Standard 217F or from the
manufacturer’s data sheets.

Element Rating failure rate

resistor 0.25 W 0.1 fit
capacitor (dry) 100 nF 0.5 fit
capacitor (elect.) 100 µF 10 fit
processor 486 500 fit
RAM 4MB 1 fit
Flash 4MB 12 fit
FPGA 5000 gates 80 fit
PLC compact 6500 fit
digital I/O 32 points 2000 fit
analog I/O 8 points 1000 fit
battery per element 400 fit
VLSI per package 100 fit
soldering    per point 0.01 fit

114'000 
1

years
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MIL HDBK 217 (1)

MIL Handbook 217B lists failure rates of common elements.

Failure rates depend strongly on the environment:
temperature, vibration, humidity, and especially the location:

- Ground benign, fixed, mobile

- Naval sheltered, unsheltered

- Airborne, Inhabited, Uninhabited, cargo, fighter

- Airborne, Rotary, Helicopter

- Space, Flight

Usually the application of MIL HDBK 217 results in pessimistic results in terms of the
overall system reliability (computed reliability is lower than actual reliability).

To obtain more realistic estimations it is necessary to collect failure data based on the
actual application instead of using the generic values from MIL HDBK 217.
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Failure rate catalogue MIL HDBK 217 (2)
Stress is expressed by lambda factors

Basic models:
– discrete components (e.g. resistor, transistor etc.)

λ = λb pE pQ pA
– integrated components (ICs, e.g. microprocessors etc.)

λ = pQ pL (C1 pT pV + C2 pE)

MIL handbook gives curves/rules for different element types to compute factors,
– λb  based on ambient temperature QA  and electrical stress S
– pE  based on environmental conditions
– pQ  based on production quality and burn-in period
– pA  based on component characteristics and usage in application
– C1 based on the complexity
– C2 based on the number of pins and the  type of packaging
– pT  based on chip temperature QJ  and technology
– pV  based on voltage stress

Example: λb usually grows exponentially with temperature ΘA (Arrhenius law)
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What can go wrong…

poor soldering (manufacturing)…
broken wire… (vibrations)

broken isolation (assembly…) chip cracking (thermal stress…)
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Failures that affect logic circuits

Thermal stress (different dilatation coefficients, contact creeping)
Electrical stress (electromagnetic fields)
Radiation stress (high-energy particles, cosmic rays in the high atmosphere)

Errors that are transient in nature (called soft-errors) can be latched in memory
systems and become firm errors. Solid errors will not disappear at restart.

E.g. FPGA with 3 M gates, exposed to 9.3 108 neutrons/cm2 exhibited
320 FIT at sea level and 150000 FIT at 20 km altitude
(see: http:\\www.actel.com/products/rescenter/ser/index.html)

http://www.actel.com/products/rescenter/ser/index.html
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Cold redundancy (cold standby): the reserve is switched off and has zero failure rate

Cold, Warm and Hot redundancy

R(t)

t

1

0

failure
of primary
element
→ switchover

reliability
of redundant
element

R(t)

t

1

0

reliability
of reserve
element

Hot redundancy: the reserve element is fully operational and under stress, it has the
same failure rate as the operating element.

Warm redundancy: the reserve element can take over in a short time, it is not
operational and has a smaller failure rate.
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9.2.2 Reliability of series and parallel systems (combinatorial)

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov models

9.2.5 Availability evaluation

9.2.6 Examples 
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Reliability of a system of unreliable elements

n

R total = R1 * R2 * .. * Rn  = Π (Ri) 
I=1

Assuming a constant failure rate λ  allows to calculate easily the failure rate of a system
by summing the failure rates of the individual components.

The reliability of a system consisting of n elements, each of which is necessary for
the function of the system, whereby the elements fail independently is:

1 2 3 4

R NooN = e -Σλi t 

This is the base for the calculation of the failure rate of systems (MIL-STD-217F)
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Example: series system, combinatorial solution

power supply motor+encoder controller

 =   e -λsupply t  * e -λmotor t  * e -λcontrol t  = e -(λsupply + λmotor + λcontrol) t 

λsupply = 0.001 h-1

λmotor = 0.0001 h-1

λcontrol = 0.00005 h-1

Rtot = Rsupply * Rmotor * Rcontrol

This does not apply any more for redundant system !

controller

power
electronics

motor
encoder

λtotal= λsupply
 + λmotor

 + λcontrol = 0.00115 h-1
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Exercise: MTTF calculation

An embedded controller consists of:
- one microprocessor 486
- 2 x 4 MB RAM
- 1 x Flash EPROM
- 50 dry capacitors
- 5 electrolytic capacitors
- 200 resistors
- 1000 soldering points
- 1 battery for the real-time-clock

what is the MTTF of the controller and what is its weakest point ? 
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Parallel system 1 out of 2 with no repair - combinatorial solution

with R1 = R2 = R:   
R1oo2 =  2 R - R2          

with R = e -λt

R1oo2 =  2 e -λt - e -2λt

R1 R2

R1 good
R2 down

R1 down
R2 good

R1 good
R2 good

simple redundant system: 
the system is good if any (or both) are good

1-R1
R1

1-R2

R2

R1oo2 =  1 - (1-R2)(1-R1)

R1oo2 =    R1R2   +   R1 (1-R2)  +     (1-R1) R2

R1

R2

ok
ok

ok
ok
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Combinatorial: R1oo2, no repair

- what is the probability that any motor fails ? 
- what is the probability that both motors did not fail until time t (landing)?

Example R1oo2: airplane with two motors 
MTTF of one motor = 1000 hours (this value is rather pessimistic)
Flight duration, t = 2 hours

single motor doesn't fail: 0.998 (0.2 % chance it fails)apply:    R1oo1 =  e -λt

R1oo2 =  2 e -λt - e -2λt both motors fail: 0.0004 % chance

assuming there is no common mode of failure (bad fuel or oil, hail, birds,…)

R2oo2 =  e -2λt no motor failure: 0.996 (0.4 % chance it fails)
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Combinatorial: 2 out of three system

R1 R2 R3

R2oo3 =  3R2-2R3

with identical elements: R1=R2=R3= R 

E.g. three computers, 

majority voting

2/3 R1 good
R2 bad
R3 good

R1 good
R2 good
R3 bad

R1 good
R2 good
R3 good

R1 bad
R2 good
R3 good

R2oo3 =   R1R2R3  + (1-R1)R2R3  + R1(1-R2)R3  + R1R2(1- R3)

R1

R3

R2
ok
ok
ok ok ok ok

ok
okok ok

okok

work fail

with R = e -λt

R2oo3 =  3 e -2λt - 2 e -3λt
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General case: k out of N Redundancy (1)

K-out-of-N computer (KooN)
•N units perform the function in parallel
•K fault-free units are necessary to achieve a correct result
•N – K units are “reserve” units, but can also participate in the function

E.g.:

• aircraft with 8 engines: 6 are needed to accomplish the mission.

• voting in computers: If the output is obtained by voting among all N units
N ≤ 2K – 1 worst-case assumption: all faulty units fail in same way
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N
i(    ) Ri (1 – R)N-i

i = 0

K
RKooN = Σ

General case: k out of N redundancy (2)

RKooN =  RN + (     )  (1-R) RN-1 + (    ) (1-R)2RN-2 +...+ (    ) (1-R)KRN-K +....+ (1-R)N = 1

no fail one of N fail two of N fail K of N fail

N
1

N
2

N
K

all fail

Example with
N = 4

N + (N-1) + (N-2) of N

 N of N

N + (N-1) of N

R1

R3

R4

R2
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Comparison chart

0.000

0.200

0.400

0.600

0.800

1.000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

R

1oo1

1oo4

2oo4

3oo4

8oo12

1oo2

2oo3 1oo1
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Summary

1oo1 (nonredundant)
1oo2 (duplication and
error detection) 2oo3 (triplication and voting)

R R R R R R

R1oo1 = R R1oo2 = 2R – R2 R2oo3 = 3R2 – 2R3

Assumes: all units have identical failure rates and comparison/voting hardware does not fail.

N
i

(    ) Ri (1 – R)N-i

i = 0

K
RKooN = Σ

kooN (k out of N must work)
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What is better ?

12 motors, 8 of which are sufficient
to accomplish the mission
(fly 21 days, MTTF = 5'000 h per motor)

2 motors, one of which is sufficient
to accomplish the mission
(fly 21 days, MTTF = 10'000 h per motor)
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MIF, ARL, reliability of redundant structures

Mission Time Improvement Factor (for given ARL)
MIF = MT2/MT1  

Reliability Improvement Factor (at given Mission Time)
RIF = (1-Rwith) / (1-Rwithout) = quotient of unreliability

ARL
1,0 with redundancy

simplex

MT1 MT2

MIF: 

RIF: 

R1

R2

time

Acceptable Reliability LevelARL: 
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R1oo2 Reliability Improvement Factor

1oo2 only suited when mission time  <<  1/λ

Reliability improvement factor (RIF)
= (1-Rwith) / (1-Rwithout)

0

0.2

0.4

0.6

0.8

1
λ = 0.001

1oo1

1oo2

MTTF1oo2 =   (2 e -λt - e -2λt) dt
0

2λ

no spectacular increase in MTTF !

3
8

=

10 hours

RIF for 10 hours mission:
R1oo1 = 0.990

R1oo2 = 0.999901
RIF = 100 

but: 
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2 out of 3 without repair - combinatorial solution

0

0.2

0.4

0.6

0.8

1

1oo1

1oo2

2oo3

MTTF2oo3 =   (3e -2λt - 2 e -3λt) dt
0

6λ

5
8

=

R2oo3 =  3R2 - 2R3 = 3e -2λt - 2e -3λt

repair is awkward to consider in
combinatorial analysis, another
method - Markov - will be used.

R1R2R3

2003 without repair
is not interesting for long mission 

RIF < 1 when t > 0.7 MTTF ! 

2/3
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Exercise: 2oo3 considering voter unreliability

input

output

R1

Compute the MTTF of the following 2-out-of-3 system with the component failure
rates:

–redundant units λ1 = 0.01 h-1

–voter unit λ2 = 0.001 h-1

R1 R1

R2
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9.2.3 Considering repair

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov Processes

9.2.5 Availability evaluation

9.2.6 Examples 
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Repair

Fault-tolerance does not improve reliability under all circumstances.
It is a solution fro short mission duration

Solution: repair (preventive maintenance, off-line repair, on-line repair)

Example: short Mission time, high MTTF: pilot, co-pilot

long Mission time, low MTTF: how to reach the stars ?
(hibernation, reproduction in space)

Problem: exchange of faulty parts during operation (safety !)
reintegration of new parts, 
teaching and synchronization
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Preventive maintenance

Preventive maintenance reduces the probability of  failure, but does not prevent it.
in systems with wear, preventive maintenance prevents aging (e.g. replace oil, filters)
Preventive maintenance is a regenerative process (maintained parts as good as new)

1

MTBPM

R(t)

Mean Time between preventive maintenance
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Considering Repair

beyond combinatorial reliability, more powerful tools are required.

the basic tool is the Markov Chain (or Markov Process) 



9.2 Dependability - Evaluation34/72Industrial Automation

9.2.4 Markov models

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov models

9.2.5 Availability evaluation

9.2.6 Examples 
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Markov

States must be     – mutually exclusive
– collectively exhaustive

∑ pi(t) = 1
all states

probability of leaving that state depends only on current state
(is independent of how much time was spent in state, how state was reached)

Let pi (t) = Probability of being in state Si at time t ->

protection failure

lightning strikes

normal

danger

DG

protection
not workingOK PD

µ

λ

σ

threat to plant
(not dangerous)

σ
repair

Define distinct states of the system depending on fault-relevant events
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Continuous Markov Chains

Time is considered continuous.

Instead of transition probabilities, the temporal behavior is given by transition rates (i.e.
transition probabilities per infinitesimal time step).

A system will remain in the same state unless going to a different state.

Relationship between state probabilities are modeled by differential equations,

e.g. dP1/dt = µ P2 –  λ P1,

dP2/dt = λ P1 – µ P2

Note: there also exist discrete Markov Chains, in which the time takes discrete steps t = 0, 1, 2,
etc., with similar definition

P1 P2
µ

λ

State 1 State 2
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Markov - hydraulic analogy

Output flow = probability of being in a state P • output rate of state

Simplification: output rate λj = constant (not a critical simplification)

State Si

from other states

State Sk1
λi

λk1

pi(t)

λi pi(t)

dpi(t) = ∑ λk pk(t)  -  ∑ λi pi(t)  
dt

pk1(t)

inflow outflow

λk2

λk3

pump

µ

P4

P3
λk2

λk3

λk1

µ

P1 Pi
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Reliability expressed as state transition

0 1

good
λ(t)

fail

good fail

fail2

all

fail1

ok
all

down

up1

up2

one element:

arbitrary transitions:

terminal states

dp0 = - λ p0dt
dp1 = + λ p0dt

non-terminal states

R(t) = p0 = e -λt

R(t) = 1 - (pfail1+ pfail2 )
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Reliability and Availability expressed in Markov

good bad up down

failure rate λ 

repair rate µ

time

good

time
up up up

state state

MTTF

Reliability Availability

definition: "probability that an item will
perform its required function in the specified
manner and under specified or assumed
conditions over a given time period"

repair

failure rate

down

MDT

bad

λ(t)

definition: "probability that an item will
perform its required function in the specified
manner and under specified or assumed
conditions at a given time "
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reliable systems have absorbing states,
they may include repair, but eventually, they will fail
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0 1 2
2λ λMarkov:

Redundancy calculation with Markov: 1 out of  2 (no repair)

good fail

λ = constant

What is the probability that system be in state S0 or S1 until time t ?

p0 (t) =  e -2λt

p1 (t) =  2 e -λt - 2 e -2λt

R(t) = p0 (t) + p1 (t) =  2 e -λt - e -2λt (same result as combinatorial - QED)

Solution:

dp0 = - 2λ p0

dp1 = + 2λ p0 - λp1 

dp2 =             + λp1 

Linear
Differential
Equation

initial conditions:

p2 (0) = 0

p1 (0) = 0
p0 (0) = 1 (initially good)

dt

dt

dt
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1out-of-2 with repair (1oo2)

0 1 2
2λ λMarkov:

µ

dp0 =  - 2λ p0           + µ p1 

dp1 = + 2λ p0 - (λ+µ) p1 

dp2 =                    + λ p1 

absorbing state

initial conditions:
p0 (0) = 1 (initially good)Linear

Differential
Equations:

p2 (0) = 0

p1 (0) = 0

What is the probability that a system fails while one failed element awaits repair ?

Ultimately , the absorbing states will be “filled”, the non-absorbing will be “empty”. 

dt

dt

dt

repair rate

failure rate
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dp3 =                 +  λ (p1+p2) 

One or two repair teams...

0

1

3

λn λbgood

fail
2 λn

µn

µb

λb

S1: on-line unit failed

S2: back-up unit failed
on-line unit fails

0 1+2 3
2λ λ

µ

dp0 =  - 2λ p0         + µ p1 + µ p2 

dp1 = +  λ p0 - (λ+µ) p1 

dt

dt
dp2 = +  λ p0                       - (λ+µ) p2 dt
dp3 =                 +  λ p1        + λ p2 dt

dp0 =  - 2λ p0         + µ p1 + µ p2 

dp1+2 = +  2λ p0 - (λ+µ) p1+2 

dt

dt

dt

it is easier to model with a repair team for each failed unit  (no serialisation of repair) 

λn = λb with µn = µb ; 

is equivalent to:
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Results: reliability R(t) of 1oo2 with repair rate µ

Time in hours0

0.2

0.4

0.6

0.8

1

 µ = 0.1 h-1

 µ = 1.0 h-1

 µ = 10 h-1

R(t) = P0+ P1 = e(3λ+µ)+W
2W W =        λ2 + 6λµ + µ2 

-(3λ+µ-W) t e(3λ+µ)-W
2W

-(3λ+µ+W) t
-

with:

R(t) accurate, but not very helpful - MTTF is a better index for long mission time

1oo2 no repair

λ = 0.01we do not
consider short
mission time

we do not
consider short
mission time

repair does not
interrupt
mission

repair does not
interrupt
mission
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Mean Time To Fail (MTTF)

0
1 3

2 4

absorbing states j

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

R(t)

0 2 4 6 8 10 12 14 time

0

∞

Σpi(t) dt 

non-absorbing states i

MTTF = 

non-absorbing states i
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MTTF calculation in Laplace  (example 1oo2)

Laplace transform
initial conditions:
p0 (t=0) = 1 (initially good)

only include non-absorbing states
(number of equations =
number of non-absorbing states)

sP0 (s)  - p0(t=0) =  - 2λ P0 (s)          + µP1(s)

          sP1(s) - 0  = + 2λ P0(s) - (λ+µ) P1(s) 

          sP2(s) - 0  =                    + λ P1(s) 

0

∞

lim  p(t) dt =  lim  s P(s)
 t → ∞  s → 0

apply boundary theorem 

-1 =  - 2 λ P0         + µP1

0  = + 2λ P0           - (λ+µ)P1 

MTTF = P0 + P1 = (µ + λ) 
2λ2

1 
λ

+ = µ/λ + 3
2λ

solution of linear equation system:
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General equation for calculating MTTF

1) Set up differential equations

2) Identify terminal states (absorbing)

3) Set up Laplace transform for the non-absorbing states

1
0
0
.. 

=  M Pna

    the degree of the equation is equal to the number of non-absorbing states

4) Solve the linear equation system

5) The MTTF of the system is equal to the sum of the non-absorbing state integrals.

6) To compute the probability of not entering a certain state, assign a dummy (very low) repair rate
to all other absorbing states and recalculate the matrix
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Correct diagram for 1oo2

0 1 3
λ (1-c)

λµ

(absorbing state)

2λc

1  =  - 2λ P0                 + µP1 

0  = + 2λc P0      - (λ+µ)P1 

0 = + λ(1-c) P0                - λP2 

1: on-line fails, fault detected
    (successful switchover and repair)
or standby fails, fault detected,
   successful repair
2: standby fails, fault not detected
3: both fail, system down

2λ (1-c)
λ

2 ( λ + µ (1-c)  )
MTTF =

(2+c) +  µ/λ (2-c)

Consider that the failure rate of a device in a 1oo2 system is divided into two failure rates:
1) a benign failure, immediately discovered with probability c

- if device is on-line, switchover to the stand-by device is successful and repair called
- if device is on stand-by, repair is called

2) a malicious failure, which is not discovered, with probability (1-c)
 - if device is on-line, switchover to the standby device fails, the system fails
 - if device is on stand-by, switchover will be unsuccessful should the online device fail 
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Approximation found in the literature

0 1 2

2λ (1-c)

λ

µ

absorbing state

2λc

-1  =  - 2λ P0                 + µP1 

0  = + 2λc P0      - (λ+µ)P1 

0 = + 2λ(1-c) P0     + λP1 

2 ( λ + µ (1-c)  )
MTTF =

(1+2c) +  µ/λapplying Markov:

This simplified diagram considers that the undetected failure of the spare causes
immediately a system failure

The results are nearly the same as with the previous four-state model…



9.2 Dependability - Evaluation50/72Industrial Automation

Influence of coverage (2)

Example: 
λ = 10-5 h-1   (MTTF = 11.4 year),
µ = 1 hour-1

MTTF with perfect coverage = 570468 years

When coverage falls below 60%, the
redundant (1oo2) system performs no better
than a simplex one !

0
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200000

300000

400000

500000

600000

1.0
00

00
0

0.9
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9

0.9
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0
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00
0

0.9
90

00
0

0.9
00

00
0

0.9
00

00
0

0.6
00

00
0

0.0
00

00
0

Therefore, coverage is a critical success
factor for redundant systems !

In particular, redundancy is useless if failure of the
spare remains undetected (lurking error). 

MTTF (c)

coverage

(1-c)
lim MTTF =

1

λλ/µ →0
lim MTTF =

1

λµ →0

µ

2λ
+

3

2
)(
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Application: 1oo2 for drive-by-wire

controlself-
checkcontrol self-

check

coverage is assumed to be the probability that 
self-check detects an error in the controller.

when self-check detects an 
error, it passivates the controller 
(output is disconnected)
and the other controller takes control.

one assumes that an accident occurs if
both controllers act differently, i.e. if a
computer does not fail to silent behaviour.

Self-check is not instantaneous,
and there is a probability that the self-check
logic is not operational, and fails in underfunction
(overfunction is an availability issue) 

α1 α2

ξ
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Results 1oo2c, applied to drive-by-wire

λ = reliability of one chain (sensor to brake) = 10-5 h-1 (MTTF = 10 years)

c = coverage: variable (expressed as uncoverage: 3nines = 99.9 % detected)

µ = repair rate = parameter
-    1 Second: reboot and restart
-   6 Minutes: go to side and stop
- 30 Minutes: go to next garage

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10

1 second

log (MTTF)

uncoverage

0.1% undetected

1 Mio years

conclusion: 
the repair interval does not matter when

coverage is poor

6 minutes

30 minutes
or once per year on a

million vehicles
or once per year on a

million vehicles

poor excellent
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Protection system (general)

protection failure

threat to plant

normal

dangerDG

protection down 
(detection and repair)OK PD

µ

λ

σ

The repair rate µ includes the detection time t !
This impacts directly the maintenance rate. 
What is an acceptable repair interval ?

In protection systems, the dangerous situation occurs when the plant is threatened (e.g.
short circuit) and the protection device is unable to respond.

The threat is a stochastic event, therefore it can be treated as a failure event.

threat to plant
(not dangerous)

σ

Note: another way to express the reliability of a protection system will be shown under “availability” 
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Protection system: how to compute test intervals

µ
λ3

protection failed 
by underfunction 

(fail-to-trip) 

lurking overfunction
(unwanted trip at next attack)

detected
error

τ

σ

Danger

λ2

Normal

τ

Plant down
Single fault

repaired

λ1

σplant 
threat

µ

Plant down 
Double fault

protection 
failed by 

immediate 
overfunction

test rate

µ

test rate

µrepaired

σ2 (unlikely)

repaired

lurking 
underfunction

 1 

 0 

 2 

 4 

 3 

 5 

 6 

unavailable
states

λ1 = overfunction of protection
λ2 = lurking overfunction

since there exist back-up protection systems, utilities are more concerned by non-productive states

λ3 = lurking underfunction

plant threat 

σ = plant suffers attack

τ = test rate (e.g. 1/6 months)
µ = repair rate (e.g. 1/8 hours)
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9.2.5 Availability evaluation

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov models

9.2.5 Availability evaluation

9.2.6 Examples 
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Punctual and Stationary Availability

A(t)

t

1

0

MTTF

MTTF + MTTR
Stationary availability A =

Punctual availability: Probability that a system works at a time t (with repair):

R(t) ≤ A(t) due to repair or preventive maintenance
(exchange parts that did not yet fail)

over the lifetime
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Availability

0 1
λ

µ

Availability expresses how often a piece of (repairable) equipment is functioning
The answer depends on failure rate λ and repair rate µ.

Punctual availability (is the system working at time t) is not relevant for most processes. 

Stationary availability (duty cycle) impacts financial results

up up up up up up down

A∞ = availability = lim ?  up times 
?  (up times + down times) t→∞

down

Availability is often expressed by its complement, U = unavailability
(e.g. 5 minutes downtime per year = availability is 0.999%)
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Examples of availability requirements

substation automation
telecom power supply

> 99,95%
5 * 10-7

4 hours per year
15 seconds per year
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Availability expressed in Markov states

0
1 3

2 4

down states j
(non-absorbing)

up states i

Availability = Σpi(t = ∞) Unavailability = Σpj (t = oo)

up
down



9.2 Dependability - Evaluation60/72Industrial Automation

Computation of Availabilities

Divide states into two sets: UP states (system works) and DOWN states (system
doesn’t work).

The stationary availability is given by the formula A = MTTF / (MTTF + MTTR).

The MTTR is given by the inverse of the repair rate, MTTR = 1/µ, to get the system
back from the set of down states to the set of up states.

The MTTF is given by the following set of equations:

MTTF(i) = 1/ρi + Σ (ρij / ρi) MTTF(j)

where i, j denote states, ρij is the transition rate from state i to state j, ρii = 0,  the sum is
taken over all states j which belong to the set of UP states and
ρi = Σ  ρij

and MTTF = MTTF(i) if i is the initial state in which the system starts
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Example: 1 out of 2 System (1oo2)

system
OK

latent
fault

no
function

2λ λ

µ

2µ

UP

DOWN

The system works if one out of two components (each with failure rate λ) works
each of the components is repaired with a repair rate µ.

a) Compute the MTTF of the system

b) Compute the availability of the system.

c) Compute the MTBR (mean time between repairs) of the system

 Assuming the system is originally in the "OK" state:
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Available 1oo2 (1 out-of-2)

0 1 2
2λ λ

Markov states:

µ

dp0 =  - 2λ p0           + µp1 

dp1 = + 2λ p0 - (λ+µ) p1 + 2µ p2

dp2 =                    + λp1 - 2µ p2
 

down state
(but not absorbing)

2µ

stationary state:            dp0 = dp1  = dp2  = 0   

due to linear dependency add condition: p0 + p1 + p2 = 1

assumption: devices can be repaired independently (little impact when λ << µ)

dt

dt

dt

A =
1

1 + 2λ2

µ2 + 2λµ

unavailability U = (1 - A) =   2λ2

µ2 + 2λµ
lim U<<1

dt dt dt
lim

t→ 8
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Availability calculation

1) Set up differential equations for all states

2) Identify up and down states (no absorbing states allowed !)

3) Remove one state equation save one (arbitrary, for numerical reasons take unlikely state) 

1
0
0
.. 

=  M Pall

5) The degree of the equation is equal to the number of states

6) Solve the linear equation system, yielding the % of time each state is visited

7) The unavailability is equal to the sum of the down states

4) Add as first equation the precondition: 1 = ?  p (all states)

We do not use Laplace for calculating the availability !
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9.2.6 Examples

9.2.1 Reliability definitions

9.2.2 Reliability of series and parallel systems

9.2.3 Considering repair

9.2.4 Markov models

9.2.5 Availability evaluation with Markov

9.2.6 Examples 
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Case study: Swiss Locomotive 460 control system availability

member
N

member
R

member
N

member
R

member
N

member
R

MVB

Assumption: each unit has a back-up unit which is switched on when the on-line unit fails

The error detection coverage c of each unit is imperfect

The switchover is not always bumpless - when the back-up unit is not correctly actualized, the main
switch trips and the locomotive is stuck on the track

What is the probability of the locomotive to be stuck on track ?

I/O system

normal reserve
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Markov model: SBB Locomotive 460 availability

λ
all OK

member R
failure 

detectedµ

train stop
and

reboot

µ
c λ

(1-c) λ

member  N fails

λ

(1−σ−β)

β

member R failsλ

λ

member N failure 
detected member R

on-line

takeover 
unsuccessful

bumpless takeover

σ

λ probability that member N or member R fails
µ mean time to repair for member N or member P

π periodic maintenance check

π

c probability of detected failure (coverage factor)
β probability of bumpless recovery (train continues)
σ probability of unsuccessful recovery (train stuck)

ρ

ρ time to reboot and restart train

member R
fails 

undetected

S0

stuck on track

µ

member  N fails

λ = 10-4 (MTTF is 10000 hours or 1,2 years)
µ = 0.1 (repair takes 10 hours, including travel to the works)
c = 0.9 (probability is 9 out of 10 errors are detected)
β = 0.9 (probability is that 9 out of 10 take-over is successful)
σ = 0.01 (probability is 1 failure in 100 cannot be recovered)
ρ = 10 (mean time to reboot and restart train is 6 minutes)
π = 1/8765 (mean time to periodic maintenance is one year).
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SBB Locomotive 460 results

.

OK after 
reboot

61%

Stuck: 
2nd failure before 
maintenance

32%

unsuccessful recovery 
7%

Stuck: after reboot 
0.00045%

Stuck: 
2nd  failure before repair 
0.0009%

How the down-time is shared:  

recommendation: increase coverage by using alternatively members N and R 
(at least every start-up)

Under these conditions:

unavailability will be 0.5 hours a year.
stuck on track is once every 20 years.
recovery will be successful 97% of the time.
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Probability to Fail on Demand for safety (protection) system

IEC 61508 characterizes a protection device by its Probability to Fail on Demand (PFD):

Protection
device

 PFD = (1 - availability of the non-faulty system) (State 0)

0 1
uλ

µR

43
(1-u)λ

underfunction

µR

overfunction

plant down plant damaged

u = probability of underfunctiongood

current sensor

circuit breaker
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Protection system with error detection (self-test) 1oo1

0

1

2
µT

ucλ S1: protection failed in underfunction, failure detected by
self-check (instantaneous), repaired with rate µR = 1/MRT

u(1-c)λ

µR

4 S2: protection failed in underfunction, failure detected by
periodic check with rate µT = 2/TestPeriod

PFD = 1 - P0 = 1 -
 1

1 + λ u (1-c)  + λ u c 
µT

λ = 10-7 h-1 

S4: system threatened, protection inactive, danger

3

λ(1−u)

S3: protection failed in overfunction, plant down 

u: probability of underfunction [IEC 61508: 50%]
λ: protection failure

C: coverage, probability of failure detection by self-check

 ˜  

µR

    + 
µT µR

λ u ( )(1-c)  c 

MTTR = 8 hours -> µR =0.125 h-1

Test Period = 3 months -> µT =2/4380 PFD = 1.1 10-5

coverage = 90% for S1 and S2 to have same probability: c = 99.8% ! 

with: 

dangeroverfunction

normal
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Example: CIGRE model of protection device with self-check

self-check 
underfunction

P1

µ

σ2

δΤ

λ3 c

µ

δΜ

DANGER

δΜ

P10, P11: failure 
detectable by

self-check

S 2

σ2

PLANT DOWN 
DOUBLE FAULT

P4, P3: failure 
detectable by

inspection

S3

λε1
S1

S10

S6

µ

λε2

PLANT DOWN
SINGLE FAULT

λ3

µ

P8, P9: error 
detection failed

δΜ

λ2

λ3 (1-c)

λ2 c

σ1σ1

λ1

self-check 
overfunction

λ2

S 5

δΤ

µ
σ2

S7

λ1 (1-c)

λ1
(1-c)

c

S9

S 4

S11

σ2

S8
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Summary: difference reliability - availability

good

fail

fail

all

fail

ok
all

up

downall
ok
all

down

down

Reliability

look for: MeanTime To Fail
(integral over time of all non-absorbing states)
set up linear equation with s = 0, 
initial conditions S0 =1
solve linear equation

look for: availability
(duty cycle in UP states)
set up differential equation (no absorbing states!)
initial condition is irrelevant
solve stationary case with ? p = 1

Availability

down

up

up

down

up
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Cas d'etude: signalisation ferroviaire Eurocab (ETCS)
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Overview Dependable Communication

9.3.1 Cyclic and Event-Driven Communication (Revisited)

9.3.2 Communication Availability and Safety (Persistency and Integrity)
– Communication Hazards
– Transmission Redundancy
– Error-Detecting and Correcting Codes
– Time Stamps, Sequence Numbers and Timeouts
– Source and Sink Identification

9.3.3 Example: Eurocab Safety Protocol
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TASK: Train speed ≤ maximal allowed speed.

advance signal main signal

train speed braking curve computed
by ATP system

usual behavior
of loco driver

emergency braking
by ATP system

Example: Automatic Train Protection (ATP)
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Simplified Structure of an ATP System

speed brake

e.g. target speed, target distance

vital computer

•  on-board system

•  track-side devices
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Eurocab: Motivation

ο    TODAY

•   13 different ATP systems in Western Europe

•   either change locomotive at border or carry several ATP systems

ο    TOMORROW

•   Eurocab on-board system for all of Europe

•   Eurobalise/Euroradio track-side devices complement existing 
track-side devices

ABB, ACEC, Alcatel SEL, Ansaldo,
CSEE, GEC Alsthom, SASIB,
Siemens, Westinghouse

EU: part of funding
railways: requirements
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ATP Systems in Western Europe

ASFA: Dimetronic 

ATB: ACEC Transport 

AWS: Westinghouse 

BACC: Ansaldo, SASIB 

KVB: GEC Alsthom 

EBICAB: ABB Signal 

Indusi, LZB: Siemens, SEL 

SELCAB: Alcatel SEL 

TBL: ACEC Transport 

TVM: CS Transport 

ZUB: Siemens
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Eurocab: Bus-Based Structure

Man-
Machine
Interface

• • •

European
Vital

Computer

Data
Logger

Specific
Interface 1

Speed and
Distance
Measurement

Eurocab
bus

Train
Interface
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Role of the “Safety” Protocol

vital process

safety 
protocol

bus 
protocol 

(non-vital)

serial bus

bus 
protocol 

(non-vital)

non-vital 
process
non-vital 
protocol

bus 
protocol 

(non-vital)

bu
s 

sy
st

em
 

(u
nt

ru
st

ed
)

vi
ta

l e
qu

ip
m

en
t 

(tr
us
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d)

non-vital 
equipment

data

data

data

vital process

safety 
protocol

data

data
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Protection of Vital Periodic Data

time 
stamp

safety ID

sink

bus

data CRC

expected
safety ID

source

clocks 
have to be 
synchronised

data
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Addressing on Bus: Source-Addressed Broadcast

1st phase: 
Master Poll

2nd phase: 
Slave 
Response

slaves

bus 
master BUS

subscribed 
device

source identifier

source sink

subscribed 
device

sink

other 
device

subscribed 
device

slaves

bus 
master BUS

value

source sinksink
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Safety ID for Vital Data

item

safety ID

example value

0F11

comment

name of telegram

length

periodic/sporadic

broadcast/point-to-point

source function

sink function

grace period

time stamp interval

measured_speed

256 bits

periodic

broadcast

SDM

any

3

- 1 ms, + 257 ms

for identification

data + explicit safety fields

producer of the data

since data are broadcast
number of telegrams that may be lost before
safety reaction has to be initiated
receiver check accuracy for time stamp

characteristics
unique value for telegrams with given 

etc. ...
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Implicit and Explicit Data

data

CRC

time stampsafety ID

16 32

32

n

MSBs known to the sink (if LSBs known)

telegram already identified by bus protocol

have to be transmitted on the bus (explicitly)only have to be 
checked 

(implicitly via CRC)
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Time Stamp Characteristics

Creation Resolution (≠ accuracy !): 1 ms
Range (32 bits implicit+explicit): about 50 days

Resolution gives upper bound on accuracy,
but maximal accuracy does not have to be utilized today and by all units

Checking Sequence check by comparison TS(i) ≥ TS(i – 1)
Age check by comparison LBTS(i) ≤ TS(i) ≤ UBTS(i)

Acceptable window [LBTS(i)-TS(i), UBTS(i)-TS(i)] defines
accuracy of age check.
Window accounts for unknown effects of clock inaccuracy,
clock drifts, transmission delays, etc.
Can be tuned to exact telegram requirements (specified in
Description Table for each Safety ID).
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Summary: Eurocab Safety Protocol

error in ... Protection of periodic data Protection of sporadic data

Safety CRC

Implicit Safety ID

Explicit Time Stamp (LSBs) 
Implicit Time Stamp (MSBs) 
Receiver Time-Out

Explicit Time Stamp (LSBs) 
Implicit Time Stamp (MSBs)

Safety CRC

Safety ID

Sequence/Retry Nr. 
 
Sender Time-Out

Sequence/Retry Nr.

... content 

... address 

... time 

... sequence
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Overview Dependable Architectures

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Dependable Computer Architectures

inputs 

outputs

2/3 voter

c) Integer & persistent
error masking

inputs

off-switch

a) Integer

" rather nothing than wrong "
(fail-silent, fail-stop, "fail-safe")

outputs

processor
active workby

output

change-over
logic

b) Persistent
" rather wrong than nothing "
"fail-operate" 

processor processor

processor processor processor

Error Detection

D
E

2/3

D
E

D
E
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9.4.1 Error Detection and Fail-Silent

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Error Detection

Error detection is the base of safe computing (fail-silent)

-> disable outputs if error detected

Error detection is the base of fault-tolerant computing (redundancy)

-> switchover if error detected

Key factors:

hamming distance:

how many simultaneous errors can be detected

coverage (recouvrement, Deckungsgrad)

probability that an error is discovered within useful time
(definition of "useful time": before any damages occur, before automatic shutdown,…)

latency (latence, Latenz)
time between occurrence and detection of an error
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Detection of Errors Caused by Physical Faults

medium to high error rate, memoryless
    parity, CRC, watchdog

medium error rate, large storage
    parity, Hamming codes, CRC on disk. 

low error rate, high complexity
    duplication and comparison, coded logic

high error rate, high diversity
    mechanical integrity, power supply supervision, watchdogs,...

Data transmission lines

Regular memory elements

Processors and controllers

Supporting elements

Error detection depends on the type of component, its error rate and its complexity.
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Error Detection: Classification

Errors can be detected, with increasing latency:
–on-line (while the specified function is performed)

→ continuous monitoring/supervision
–off-line (in a time period when the unit is not used for its specified function)

→ periodic testing
–during periodic maintenance (when the unit is tested and calibrated)

The correctness of a result can be checked with
–relative tests (comparison tests):
by comparing several results of redundant units or computations
→ pessimistic, i.e. differences due to (allowed) indeterminism count as errors

high coverage, high cost
–absolute tests (acceptance tests):
by checking the result against an a priori consistency condition (plausibility check)
 → optimistic, i.e. even if result is consistent it may not be correct

(but can catch some design errors)
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Error Detection: Possibilities

relative test absolute test

on-line

off-line

duplication and comparison
(either hardware duplication
or time redundancy)

triplication and voting

comparison with
precomputed test result
(fixed inputs)

e.g. memory test

check of program version

check of watchdog function

check code for program code

watchdog (time-out)

control flow checking

error-detecting code (CRC, etc.)

illegal address checking
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Error Detection: Watchdog Processor

application processor

reset

cyclic
application
(k ms)

watchdog
processor

supply
voltage

safe
switch

inhibit

time
> k ms

The application processor periodically resets the watchdog timer. If it fails to do it, the
watchdog processor will shut down and restart the processor processor.
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Error Detection: Duplication and Comparison

Conditions: worker and checker are identical and deterministic. 
inputs are (made) identical and synchronized (interrupts !)
output must be synchronized to allow comparison.  

 

Problems: non-determinism: digital
computers are made of analog elements:
(variable delays, levels, asynchronous
clocks...)

≠

worker checker

comparator

switch

safe output

safe input

spreader

sync

clock

Variant: the checker only checks the plausibility of the results
(requires definition of what is forbidden)

The safety-relevant parts are useless if
not regularly checked.

Advantage: high coverage, short latency
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Integer processors

Integer processors are often called “fail-safe” processors, but they are only safe 
when used in plants where a safe state can be reached by passive means.

This requires a high coverage, that is usually achieved by duplication and comparison.

For operation, both computers must be operational, this is a 2oo2 structure
(2 out of 2).
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Integer Computers: Self-Testing System

Computers include increasingly means to detect their own errors. 

serial bus 
(CRC)

changeover logic 
to safe state

parallel 
backplane bus 

(self-test by 
parity)

E
D MEM

E
D PE

D PE
D P

E
D I/O

Vs

self-testing 
processors 

(e.g. duplication
& comparison)

stable storage 
(with EDC)

safe value
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Integer outputs: selection by the plant

worker checker controller E
D

M

worker checker

The dual channel should be extended as far as possible into the plant

act if both agree
(workby)

act if any does
(workby)

act if error detection agrees
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9.4.2 Fault-tolerant structures

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Fault tolerant structures

Fault tolerance allows to continue operation in spite of a limited number of
independent failures. 

Fault tolerance relies on operational redundancy.
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Workby of 3 synchronised and identical units.
– All 3 units OK: Correct output.
– 2 units OK: Majority output correct.
– 2 or 3 units with same failure behaviour: Incorrect output.
– Otherwise: Error detection output.

Static redundancy: 2 out of 3  (2oo3) Computer

sync

voter

sync

process input

process output

also known as:

TMR (triple module
redundancy)

provides Safety (fail-silent) and availability (fail-operate) !
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Dynamic Redundancy (vs. static redundancy like 2/3)

primary unit standby unit

switch
output

What are standby units used for?
– only as redundancy
– for other functions (can get lower priority in case of primary unit failure)
– better performance (“graceful degradation” in case of failure)

input

Redundancy only activated after an error is detected.
–primary components (non-redundant)
–reserve components (redundancy), standby (cold/hot standby)
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Example: Flight Control Display Module for helicopters

reconfiguration unit:
the pilot judges which
FCDM to trust in case of
discrepancy

sensors
(Attitude Heading Reference System)

instrument control panel

primary flight display /
navigation display

source: National Aerospace Laboratory, NLR
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Workby and Standby

on-line workby
sync

=

on-line standby
sync

Hot standby Cold standby

Both computers are doing
the same calculations
at the same time

Comparison for easy
error detection.

Comparator needed.
Non-redundant continuation

in case of failure?

Standby is not computing
Error detection needed.
Easy switchover in case
of failure.
Easy repair of reserve unit.

Standby is no operational
Error detection needed.
Long switchover period
with loss of state info.
No aging of reserve unit.

Workby
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Workby: Fault-Tolerance for both Integrity and Persistency

disjunctor

comparator

INTEGER
2oo2

Worker

synchronization

Matching

input

Co-
Worker

Output

output

Worker

commutator

synchronization

Matching

PERSISTENT
1oo2D

input

Co-
Worker

Output

output

E
D

E
D

réserve synchrone, synchroner Ersatz
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Hybrid Redundancy

Mixture of workby (static redundancy) and standby (dynamic redundancy).

voter

work-
by

work-
by

work-
by

stand-
by

stand-
by

voter

work-
by failed work-

by
work-

by
stand-

by
Reconfiguration
(self-purging
redundancy)
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General designation

NooK: N out-of K

1oo1: simplex system
1oo2: duplicated system, one unit is sufficient to perform the function
2oo2: duplicated system, both units must be operational (fail-safe)
1oo2D: duplicated system with self-check error detection (fail-operational)
2oo3: triple modular redundancy: 2 out of three must be operational (masking)
2oo4: masking architecture 
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9.4.3 Workby

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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Workby: Input and Output Handling

input synchronization and matching

Delay (skew, jitter) between outputs must be below a certain value to allow comparison
and smooth switchover.  

input

output

Workby can be used to provide integrity (safety) or persistency (availability)
and massive redundancy (masking)

output comparison and selection

Replicated units must receive exactly the same input at the same time.

identical,
deterministic,
synchronized

state machines



9.4 Dependable Architectures25/52Industrial Automation

Workby: Matching two inputs

Matching: reaching a consensus value used by all replicas

Redundant inputs may differ in:
• value (different sensors, sampling)
• timing (even when coming from the same sensor, different delays)

matching on median value, time-averaged value, 
exclusion of untrusted values,...

Binary inputs: 
Analog inputs: 

matching within a time window, biased decision,...

computer
A

computer
B

To reach a consensus, each computer must know the input value received by 
the other computer.
Matching requires application knowledge of the physical quantities involved. 

input A input B
redundant

matching
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Matching

The matched value depends on the semantics of the variables.
Matching needs knowledge of the dynamic and physical behaviour.
Matching stretches over several consecutive values of the variables.  

Binary variables: 

jitter

Analog variables:

time

time

A

B

A
B

Therefore, matching must be done by an application-dependent process.
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Input synchronisation and matching in massive redundancy

input synchronization and matching

computer
A

computer
B

computer
C

input

Correct input synchronisation require input synchronization and matching (building a
consensus value used by all the replicas)

Redundant sensors or same sensor value distributed to all replicas: needs application
knowledge

Every replica builds a vector of the value it received directly and the value received by
the other units and applies the matching algorithm to it.

It is mandatory that all units can compare the same vector

-> reliable broadcast, Byzantine problems.
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The Byzantine Generals´ Problem

A

CB
attack
attack

attackattack

A

CB
attack
retreat

attackretreat
A

CB
attack
retreat

attackattack

C cannot distinguish who is the traitor, A or B

No solution for ≤3t parties in presence of t faults. 
Encryption (source authentification) 
Reliable broadcast

Solutions: 

For success, all generals must take the same decision, in spite of 't' traitors. 

Sources: Lamport, Shostak, Pease,  "Reaching Agreement", J Asso. Com. Mach, 1980, , 27, pp 228-234. 

This is a general problem also affecting replicated databases
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Matching - not so easy (a Boeing Patent)



9.4 Dependable Architectures30/52Industrial Automation

Workby: Interrupt Synchronisation

101 101

104 105 106CPU 1 101 102 103

interrupt request

104CPU 2 101 102 103

407 408

407 408

synchronized 
CPU (same clock)

time

Instructions may affect the control flow

Interrupts must be matched, like any other input data

All decisions which affect the control flow (task switch) require previous matching. 

The execution paths diverge, if any action performed is non-identical

Solution: do not use interrupt, poll the interrupt vector after a certain number of instructions 

instruction number just before

just after
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Workby synchronisation: Metastability issue

The synchronization of asynchronous inputs by hardware means is only
possible with a certain probability

D
Clock

Q
D

clock

Q

E < Ecrit
E > Ecrit

E ~ Ecrit

- 100 ns

Circuit (D-flip-flop)

Analogy
golf ball

matching must rely on the exchange of defined signals, common signals are 
no suitable mean for reaching a consensus. 

E = kynetic energy
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Workby: Output Comparison and Voting

The synchronized computers operate preferably in a cyclic way so as to 
guarantee determinism and easy comparison.

The last decision on the correct value must be made in the process itself.

read inputs

compute

build 
consensus

synchro
outputs

read inputs

compute

synchro
outputs

read inputs

compute

build 
consensus

synchro
outputs

build 
consensus
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Workby: Voting done by the controlled process

control 
surfaces

motors

power 
electronics 
and control

Damaged Unit
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9.4.4 Standby

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer

réserve asynchrone, unbeteiligter Ersatz
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Dynamic Redundancy (e.g. with cold standby)

At the simplest, restart can be done on the same machine
(to cope with manipulation errors or transient faults) -> automatic restart.
this needs a recovery state stored on the same machine.

The basic techniques for state saving are the same as for the back-up in a personal
computer or on mainframe computers.
Restart after repair requires a more elaborate state saving.

Standby relies on the existence of a stable storage in which the state of the 
computation is guarded, either in a non-volatile memory (Non-Volatile RAM, disk) or
in a fail-independent memory (which can be the workspace of the spare machine). 

Standby requires a periodic checkpointing to keep the stable storage up-to-date.
There is always a lag between the state of computations and the state of stable storage, 
because of the checkpointing interval or because of aynchronous input/outputs. 

Standby consists in restarting a failed computation. 
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Recovery

It is not sufficient that a back-up unit exists, it must be loaded with the same
data and be in a state as near possible to the state of the on-line unit. 
The actualisation of the back-up assumes that computers are deterministic
and identical machines. 

“Given two identical machines, initially in the same state,  the states of these
machines will follow each other provided they always act on the same inputs,
received in the same sequence.”  

the on-line unit regularly copies its
state and its inputs to the back-up.

both machines are fed with the
same, synchronized inputs
and modify their states based on
these inputs only in the same
manner

OFF-LINE ACTUALIZATION (cold standby): irrelevant for process control,
except for the reintegration of repaired units. 

workby standby
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Comparison: Standby and Workby Computers

restore

Back-Up 
(work-by)

SYNC

INPUT

OUTPUTOUTPUT

b) WORKBYa) STANDBY

On-LineE 
D

E 
D

match

save

track I/O

On-lineE 
D

on-line back-up on-line

back-up

E 
D

Back-Up
(stand-by)

INPUT' INPUT"

INPUT

On-line unit and Back-up execute the
same programs at (about) the same time.
They are tightly synchronized.  

The on-line unit  regularly actualises
the state of the stand-by unit, which
otherwise remains passive.  

error 
detection

SWITCHOVER 
UNIT

ED = Error Detection
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Saving enough information to reconstruct a previous, known-good state.

full 
back-up

delta 
back-up CP CP CP

reconstruct initial state
apply deltas to full back-up

CP CP

reconstruct 
known-good 

state
CP CP CP

To speed up recovery, the stand-by can apply the deltas to its state continuously. 

CP

recover

stable 
storage 

(or stand-by's 
memory)

Checkpointing requires  identification of the parts of the context modified since 
last checkpoint - application dependency !

To limit the data to save (checkpoint duration, distance between checkpoints), 
only the parts of the state modified since last checkpoint are saved. 

ON-LINE

reconstruct initial state
apply deltas to full back-up

reconstruct 
known-good 

state
CP CP CP

Stand-By

recover

stable 
storage 

(or stand-by's 
memory)

On-Line

Checkpointing
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Checkpointing

The amount of data to save to reconstruct a previous known-good state 
depend on the instant the checkpoint is taken.

processor
microregister

cache

registers

RAM

disk

world (cannot be rolled back !) 

Recovery depends on which parts of the state are trusted after a crash = stable 
storage , and which are not (volatile storage)

and on which parts are relevant. 
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Checkpointing Strategy

Checkpointing is difficult to provide automatically, unless every change to the 
trusted storage is monitored. This requires additional hardware (e.g. bus spy). 
Many times, the changes cannot be controlled since they take place in cache.  

The amount of relevent information depends on the checkpoint location: 
• after the execution of a task, its workspace is not anymore relevant. 
• after the execution of a procedure, its stack is not anymore relevant 
• after the execution of an instruction, microregisters are no more relevant. 

Therefore, an efficient checkpointing requires that the application tags the 
data to save and decide on the checkpoint location. 

 
Problem: how to keep control on the interval between checkpoints if the 

execution time of the programs is unknown ? 
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full back-up Checkpoint

reconstruct 
known-good state

Checkpoint
Stand-by

On-line

Checkpoint

For faster recovery and closer checkpointing, the stand-by monitors the
input-output interactions of the on-line unit in a log (fifo).
After reconstructing a know-good state, the stand-by resumes computation and applies
the log of interactions to it:

•It takes its input data from the log instead of reading them directly.
•It suppresses outputs if they are already in the log (counts them)
•It resumes normal computations when the log is void. 

external world

replay 
log

regular 
operation

log entries

Logging
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Domino Effect

As long as a failed unit does not communicate with the outer world, there is no harm.
The failure of a unit can oblige to roll back another unit which did not fail,because it acted
on incorrect data.
This roll-back can propagate under evil circumstances ad infinitum (Domino-effect)
This effect can be easily prevented by placing the checkpoints in function of
communication - each communication point should be a checkpoint.

Process 1

Process 2

Process 3

3

12

4

5

6
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Recovery Times for Various Architectures

degree of 
coupling

lock-step 
synchronization

common 
memory

local 
network wide area 

network

recovery time100 s10s1s0.1s10 ms

The time available for recovery depends on the tolerance of the plant against outages. 

When this time is long enough, stand-by operation becomes possible

2/3 voting

1/2 workby

standby

workby/ 
standby
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9.4.5 Example Architectures

9.4.1 Error detection and fail-silent computers
- check redundancy
- duplication and comparison

9.4.2 Fault-Tolerant Structures

9.4.3 Issues in Workby operation
- Input Processing
- Synchronization
- Output Processing

9.4.4 Standby Redundancy Structures
- Checkpointing
- Recovery

9.4.5 Examples of Dependable Architectures
- ABB dual controller
- Boeing 777 Primary Flight Control
- Space Shuttle PASS Computer
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ABB 1/2 Multiprocessor

Synchronizing multiprocessors means: synchronize processors with the peer
processor, and pairs with other pairs.
The multiprocessor bus must support a deterministic arbitration.
The Update and Synchronization Unit USU enforces synchronous operation.

SIDE A SIDE B

duplicated 
input/output

Commutator

USU

OutputInput Input"

PE 
D PE 

D PE 
D PE 

D PE 
D PE 

D

I/OE 
D ME 

DME 
D I/OE 

D
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Redundant control system

Central repository
– Redundant 2oo3

Duplication of connectivity severs
– each maintains its own A&E and history log

Network
– Dual lines, dual interfaces,

dual ports on controller CPU

Controller CPU
– Hot standby, 1oo2

PROFIBUS DP/V1 line redundancy
– Single bus interface, dual lines

PROFIBUS DP/V1 slave redundancy
– S800, S900, dual bus interfaces

Redundant I/O, remote
Dual power supplies

– Supervision of A and B power lines in
AC 800M, S800 I/O, S900 I/O

Power back-up for workplaces and servers
– UPS (Uninterruptible Power Supply) technology

Connectivity
Server

Aspect
Server

System
Features
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Bus line redundancy principle

line A

line B

Sink device

Skew: 8 us

match

•Principle: send on both, listen on both, take from one
•Skew between lines (repeaters,…) allowed
•Sequence number allows to track and ignore duplicates (not necessary for cyclic data)
•Duplicated complete decoder avoids systematic rejection of good frames
•Line redundancy is periodically checked
•Continuous transmitter fault limited to one repeater area

Skew: 10 ns

Source device

?

Skew: 8 us

?

decoder decoder

Sink device

match

decoder decoder
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B777: airplane
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B777 control architecture
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B777 control surfaces
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B777 Modules
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B777 Primary Flight Control

triplicated
input bus

Motorola
68040

Intel
80486

AMD
29050

Primary
Flight
Computer
(PFC 1)

sensor inputs

 input           signal          mgt.

triplicated
output bus

PFC 2
(Intel)

PFC 3
(AMD)

actuator control actuator control actuator control

left actuator centre actuator right actuator
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Space Shuttle PASS Computer

CRT 
display

payload- 
interface 

Manipulator 
uplink

Solid rocket 
boosters 

Ground umbilicals 
Ground support 

equipment

Telemetry
Mass 

memory 
units

GNC sensors 
Main engine interface 
Aerosurface actuators 
Thrust - vector control 

actuators 
Primary flight displays 

Mission event controllers 
Master time 

Navigation aids

28 
1 - MHz 

serial data 
buses 

( 23 shared, 
5 dedicated )

GPC 5

IOP 5

GPC 4

IOP 4

GPC 3

IOP 3

GPC 2

IOP 2

GPC 1

IOP 1

Discrete inputs and analog IOPs, control panels, and mass memories

Intercomputer (5)
Mass memory (2)

Display system (4)
Payload operation (2)

Launch function (2)
Flight instrument (5;1 dedicated per GPC)
Flight - critical sensor and control (8)

Control 
Panels

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5
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Wrap-up

Fault-tolerant computers offer a finite increase in availability (safety)

All fault-tolerant architectures suffer from the following weaknesses:

- assumption of no common mode of error
hardware: mechanical, power supply, environment, 
software: no design errors

- assumption of near-perfect coverage to avoid lurking errors and ensure fail-silence.

-assumption of short repair and maintenance time

-increased complexity with respect to the 1oo1 solution

ultimately, the question is that of which risk is society willing to accept. 
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Overview Dependable Software

9.5.1 Requirements on Software Dependability

–Failure Rates

–Physical vs. Design Faults

9.5.2 Software Dependability Techniques

–Fault Avoidance and Fault Removal

–On-line Fault Detection and Tolerance
–On-line Fault Detection Techniques

–Recovery Blocks

–N-version Programming

–Redundant Data

9.5.3 Examples

–Automatic Train Protection

–High-Voltage Substation Protection
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Requirements for Safe Computer Systems

integrity level
control systems protection systems

4 ≥ 10 -9  to < 10 -8 ≥ 10 -5  to < 10 -4

3 ≥ 10 -8  to < 10 -7 ≥ 10 -4  to < 10 -3

2 ≥ 10 -7  to < 10 -6 ≥ 10 -3  to < 10 -2

1 ≥ 10 -6  to < 10 -5 ≥ 10 -2  to < 10 -1

Required failure rates according to the standard IEC 61508:

[per hour] [per operation]

< 1 failure every 10 000 years

safety

most safety-critical systems
(e.g. railway signalling)
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Software Problems

Did you ever see software that did not fail once in 10 000 years
(i.e. it never failed during your lifetime)?

First space shuttle launch delayed due to software synchronisation 
problem, 1981 (IBM).

Therac 25 (radiation therapy machine) killed 2 people due to software 
defect leading to massive overdoses in 1986 (AECL).

Software defect in 4ESS telephone switching system in USA led to 
loss of $60 million due to outages in 1990 (AT&T).

Software error in Patriot equipment: Missed Iraqi Scud missile in 
Kuwait war killed 28 American soldiers in Dhahran, 1991 (Raytheon).

... [add your favourite software bug].

•

•

•

•

•
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The Patriot Missile Failure

"The range gate's prediction of where the Scud will next appear is a function of the Scud's known velocity and the
time of the last radar detection.
Velocity is a real number that can be expressed as a whole number and a decimal (e.g., 3750.2563...miles per
hour).
Time is kept continuously by the system's internal clock in tenths of seconds but is expressed as an integer or whole
number (e.g., 32, 33, 34...).
The longer the system has been running, the larger the number representing time. To predict where the Scud will
next appear, both time and velocity must be expressed as real numbers. Because of the way the Patriot computer
performs its calculations and the fact that its registers are only 24 bits long, the conversion of time from an integer
to a real number cannot be any more precise than 24 bits. This conversion results in a loss of precision causing a
less accurate time calculation. The effect of this inaccuracy on the range gate's calculation is directly proportional
to the target's velocity and the length of the system has been running. Consequently, performing the conversion
after the Patriot has been running continuously for extended periods causes the range gate to shift away from the
center of the target, making it less likely that the target, in this case a Scud, will be successfully intercepted."

The Patriot Missile failure in Dharan, Saudi Arabia, on February 25, 1991 which resulted in
28 deaths, is ultimately attributable to poor handling of rounding errors.
On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi
Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck an American
Army barracks, killing 28 soldiers and injuring around 100 other people.

A report of the General Accounting office, GAO/IMTEC-92-26, entitled Patriot Missile Defense:
Software Problem Led to System Failure at Dhahran, Saudi Arabia analyses the causes (excerpt):
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Ariane 501 failure

"The failure of the Ariane 501 was caused by the complete loss of guidance and attitude information 37 seconds
after start of the main engine ignition sequence (30 seconds after lift-off). This loss of information was due to
specification and design errors in the software of the inertial reference system.
The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating
point to 16-bit signed integer value. The floating point number which was converted had a value greater than
what could be represented by a 16-bit signed integer. "
*SRI stands for Système de Référence Inertielle or Inertial Reference System.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded just forty seconds after its lift-
off from Kourou, French Guiana.    The rocket was on its first
voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million. A
board of inquiry investigated the causes of the explosion and in
two weeks issued a report. http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

(no more available at the original site)

Code was reused from the Ariane 4 guidance system. The Ariane 4 has different flight characteristics in the first 30 s of
flight and exception conditions were generated on both inertial guidance system (IGS) channels of the Ariane 5. There
are some instances in other domains where what worked for the first implementation did not work for the second.

"Reuse without a contract is folly"
90% of safety-critical failures are requirement errors (a JPL study)

http://www.ima.umn.edu/%7earnold/disasters/ariane5rep.html
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It begins with the specifications ....

A 1988 survey conducted by the United Kingdom's Health & Safety Executive (Bootle,
U.K.) of 34 "reportable" accidents in the chemical process industry revealed that
inadequate specifications could be linked to 20% (the #1 cause) of these accidents.
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Software and the System

"Software by itself is never dangerous, safety is a system characteristic." 

Fault detection: Safe state of physical system exists (fail-safe system). 
Fault tolerance: No safe state exists.

computer 
system

physical 
system 
(e.g. HV 
substation, 
train, factory)

environment 
(e.g. persons, 
buildings, etc.)

software

Persistency: Computer always produces output (which may be wrong). 
Integrity:  Computer never produces wrong output (maybe no output at all).

system
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Which Faults?

physical faults 
random faults

design faults 
systematic faults 

hardware

software

statistics

???

???

solution: redundancy

solution: diversity
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Fail-Safe Computer Systems

Approach 1: Layered

• systematic 
• flexible 
• expensive

Approach 2: All in One

• less flexible 
• less expensive 
• clear safety responsibility 

fail-safe hardware

fail-safe software against 
design faults 
 
 
against 
physical faults hardware

fail-safe software
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Software Dependability Techniques

1) Against design faults

–Fault avoidance → (formal) software development techniques

–Fault removal → verification and validation (e.g. test)

–On-line error detection and fault tolerance → design diversity

2) Against physical faults

–Fault detection and fault tolerance
(physical faults can not be detected and removed at design time)

–Systematic software diversity (random faults definitely lead to different errors in both
software variants)

–Continuous supervision (e.g. coding techniques, control flow checking, etc.)

–Periodic testing
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Fault Avoidance and Fault Removal

requirements  
specification

design  
specification

program

Requirements 
analysis

System/Software 
Design

Implementation

a

complete 
system

Integration

Verification &
Validation
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Validation and Verification (V&V)

Validation: Do I develop the right solution? 
Verification: Do I develop the solution right? 

dynamic techniques 
• test 
• simulation

static techniques 
• review 
• proof
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Test: Enough for Proving Safety?

confidence level minimal test length

95 % 3.00 / 
99 % 4.61 / 

99.9 % 6.91 / 
99.99 % 9.21 / 

99.999 % 11.51 / 

How many (successful !) tests  to show failure rate < limit ? 

→  Depends on required confidence. 

limit
limit
limit
limit

limit

Example: c = 99.99 % , failure rate 10 -9/h → test length > 1 million years
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Testing

Testing requires a test specification, test rules (suite) and test protocol

specification

implementation test rules

test procedure

test results

Testing can only reveal errors, not demonstrate their absence ! (Dikstra)
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Simulation: Tools and Languages

SDL LOTOS Esterel Statecharts

graphical syntax 3 3 – 3

syntax analysis,   
static checks 3 3 3 3

interactive simulation 3 3 3 3

deterministic simulation 3 3 ? 3

stochastic simulation – ? – 3

code generation C C C C, Ada
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Formal Proofs

informal 
requirements

formal 
spec.

required 
properties

proof

formalization

formal 
spec.

formal 
implemen- 

tation

construction proof

Implementation Proofs Property Proofs
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Formal Languages and Tools

mathematical foundation example tools
VDM dynamic logic  

(pre- and postconditions)
• Mural  from University of Manchester
• SpecBox from Adelard

Z predicate logic, set theory • ProofPower  from ICL Secure Systems
• DST-fuzz  from Deutsche System Technik

SDL finite-state machines • SDT  from Telelogic
• Geode  from Verilog

LOTOS process algebra • The LOTOS Toolbox  from Information
Technology Architecture B.V.

NP propositional logic • NP-Tools  from Logikkonsult NP

Dilemma: 
Either the language is not very powerful, 
or the proof process cannot be easily automated.
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On-line Error Detection by N-Version programming

"detection of design errors on-line by diversified software, independently 
programmed in different languages by independent teams, running on
different computers, possibly of different type and operating system".
 Difficult to ensure that the teams end up with comparable results, as most computations
yield similar, but not identical results:

• rounding errors in floating-point arithmetic
(use of identical algorithms)

• different branches taken at random
(IF (T >100.0) THEN ...)

• equivalent representation (data formats) 
If (success = 0)….
If success = TRUE
If (success)…

Difficult to ensure that the teams do not make the same errors 
(common school, and interpret the specifications in the same wrong way)

N-Version programming is the software equivalent of massive redundancy (workby)



9.5 Dependable Software20/40Industrial Automation

Acceptance Tests

Acceptance Test are invariants calculated at run-time

• definition of invariants in the behaviour of the software

• set-up of a "don't do" specification

• plausibility checks included by the programmer of  the  
task (efficient but cannot cope with surprise errors). 

allowed
states

x

y



9.5 Dependable Software21/40Industrial Automation

Cost Efficiency of Fault Removal vs. On-line Error Detection

Design errors are difficult to detect and even more difficult to correct on-line. 
The cost of diverse software can often be invested more efficiently in
off-line testing and validation instead. 

t

r(t)

rs(t)
rdi(t)

development
version 1

development
version 2

debugging single version

debugging two versions (stretched by factor 2)

t0 t1 T

rd(t)

Rate of safety-critical failures (assuming independence between versions):
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On-line Error Detection

?

plausibility check

?

acceptance test redundancy/diversity
hardware/software/time

example test

?

?

• periodical tests

• continuous supervision

overhead
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Plausibility Checks / Acceptance Tests

range checks 

 

structural checks 

control flow checks 

 

timing checks 

 

coding checks 

reversal checks

• 
 
 
 
• 
 
• 
 
 
 
• 
 
 
 
• 
 
•

0 ≤ train speed ≤ 500

given list length / last pointer NIL

set flag; go to procedure; check flag

hardware signature monitors

checking of time-stamps/toggle bits

hardware watchdogs

parity bit, CRC

compute y = √x; check x = y2

safety assertions
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Recovery Blocks

primary 
program

alternate 
version 1sw

itc
h

• 
• 
•

recovery 
state

acc. 
test

input try alternate version
failed

passed
result

versions exhausted

unrecoverable error
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N-Version Programming (Design Diversity)

specification

software 1

software 2

software n

design time: different teams 
different languages 
different data structures 
different operating system 
different tools (e.g. compilers) 
different sites (countries) 
different specification languages 
• • •

run time:

f1

f1'

f2

f2'

f3

f3'

f4

f4'

f5

f5'

f6

f6'

f7

f7'

f8

f8'

= = = = = = = =

time
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Issues in N-Version Programming

number of software versions (fault detection ↔ fault tolerance)

hardware redundancy ↔ time redundancy (real-time !)

random diversity ↔ systematic diversity

determination of cross-check (voting) points

format of cross-check values

cross-check decision algorithm (consistent comparison problem !)

recovery/rollback procedure (domino effect !)

common specification errors (and support environment !)

cost for software development

diverse maintenance of diverse software ?

•
•
•
•
•
•
•
•
•
•
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Consistent Comparison Problem

Problem occurs if floating point numbers are used.

Finite precision of hardware arithmetic
→  result depends on sequence of
computation steps.

Thus: Different versions may result in
slightly different results
→ result comparator needs to do
“inexact comparisons”

Even worse: Results used internally
in subsequent computations with
comparisons.

Example: Computation of pressure
value P and temperature value T
with floating point arithmetic and
usage as in program shown:

T > Tth?

P > Pth?

branch 1 branch 3
branch 2

no

no

yes

yes



9.5 Dependable Software28/40Industrial Automation

Redundant Data

Redundantly linked list

Data diversity

status status status

input
diversi-
fication

in

in 1

in 2

in 3

algorithm

out 1

out 2

out  3

decision out
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Examples

Use of formal methods
– Formal specification with Z

Tektronix: Specification of reusable oscilloscope architecture
– Formal specification with SDL

ABB Signal: Specification of automatic train protection systems
– Formal software verification with Statecharts

GEC Alsthom: SACEM - speed control of RER line A trains in Paris

Use of design diversity
– 2x2-version programming

Aerospatiale: Fly-by wire system of Airbus A310
– 2-version programming

US Space Shuttle: PASS (IBM) and BFS (Rockwell)
– 2-version programming

ABB Signal: Error detection in automatic train protection system EBICAB
900
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Example: 2-Version Programming (EBICAB 900)

Both for physical faults and design faults (single processor →  time redundancy).

- 2 separate teams for algorithms A and B
3rd team for A and B specs and synchronisation

- B data is inverted, single bytes mirrored compared with A data

- A data stored in increasing order, B data in decreasing order

- Comparison between A and B data at checkpoints

- Single points of failure (e.g. data input) with special protection (e.g. serial input with CRC)

data
input algorithm A algorithm B A = B?

data
output

time

• • •



9.5 Dependable Software31/40Industrial Automation

Example: On-line physical fault detection

substation

substation

power plant power plant

to consumers

busbar

bay

line
protection

busbar
protection
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Functionality of Busbar Protection (Simplified)

primary system:
busbar

current
measurement

tripping

secondary system:
busbar protection Σ

• • •

≠ 0
Kirchhoff’s
current law
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ABB REB 500 Hardware Structure

CT

bay units

central unit

CT

• • •

• • •

CMP

CSP

BIO

AI
BIO

AI
BIO

• • •

REB 500 is a
distributed
real-time
computer system
(up to 250
processors).

busbar

current
measurement

tripping,
busbar replica
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Software Self-Supervision

Each processor in the system runs application objects and self-supervision tasks.

Only communication between self-supervision tasks is shown.

CMP appl. CMP SSV

CSP appl. CSP SSV

AI appl. AI SSV BIO appl. BIO SSV
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Elements of the Self-Supervision Hierarchy

continuous
application
monitoring

periodic/
start-up

HW tests

self-supervision (n-1)

status
self-supervision (n) deblock (n+1)

deblock (n)

status classification

Self-Supervision Objects

Application Objects
data (in) data (out)= ?



9.5 Dependable Software36/40Industrial Automation

Example Self-Supervision Mechanisms

Implicit safety ID (source/sink)

•  Binary Input Encoding: 1-out-of-3 code for normal positions
(open, closed, moving)

•  Data Transmission: Safety CRC

Time-stamp

•  Input Consistency: Matching time-stamps and data sources

•  Safe Storage: Duplicate data 
Check cyclic production/consumption with toggle bit

Receiver time-out

•  Diverse tripping: Two independent trip decision algorithms
(differential with restraint current,
comparison of current phases)
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Example Handling of Protection System Faults

busbar
zone 1

busbar
zone 2

running

major error

major errorrunning

deblock

running

blocked

running

running

CMP

CSP CSP

AI AIBIO BIO
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Exercise: Robot arm

β

α

write a program to determine the x,y coordinates of the robot head H, given that EC and
CH are known.
The (absolute) angles are given by a resolver with 16 bits (0..65535), at joints E and C

E

C

H

X

Y
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Overview Dependability Analysis

9.6.1 Qualitative Evaluation
– Failure Mode and Effects Analysis (FMEA)
– Fault Tree Analysis (FTA)
– Example: Differential pressure transmitter

9.6.2 Quantitative Evaluation
– Combinational Evaluation
– Markov Chains
– Example: Bus-bar Protection

9.6.3 Dependability Standards and Certification
– Standardization Agencies
– Standards
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Failure Mode and Effects Analysis (FMEA)

Analysis method to identify component failures which have significant
consequences affecting the system operation in the application considered.
→ identify faults (component failures) that lead to system failures.

component 1 component n

failure
mode 1

failure
mode k

failure
mode 1

failure
mode k

• • •

• • • • • •

effect on system ?

FMEA is inductive (bottom-up).
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FMEA: Coffee machine example

component failure mode effect on system

water tank empty no coffee produced

too full electronics damaged

coffee bean container empty no coffee produced

too full coffee mill gets stuck

coffee grounds container too full coffee grounds spilled

………
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FMEA: Purpose (overall)

There are different reasons why an FMEA can be performed:
– Evaluation of effects and sequences of events caused by each identified

item failure mode
(→ get to know the system better)

– Determination of the significance or criticality of each failure mode as to
the system’s correct function or performance and the impact on the
availability and/or safety of the related process
(® identify weak spots)

– Classification of identified failure modes according to their detectability,
diagnosability, testability, item replaceability and operating provisions
(tests, repair, maintenance, logistics etc.)
(® take the necessary precautions)

– Estimation of measures of the significance and probability of failure
(® demonstrate level of availability/safety to user or certification agency)
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FMEA: Critical decisions

Depending on the exact purpose of the analysis, several decisions have to be
made:
– For what purpose is it performed (find weak spots « demonstrate safety to

certification agency, demonstrate safety « compute availability)
– When is the analysis performed (e.g. before « after detailed design)?
– What is the system (highest level considered), where are the boundaries

to the external world (that is assumed fault-free)?
– Which components are analyzed (lowest level considered)?
– Which failure modes are considered (electrical, mechanical, hydraulic,

design faults, human/operation errors)?
– Are secondary and higher-order effects considered (i.e. one fault causing

a second fault which then causes a system failure etc.)?
– By whom is the analysis performed (designer, who knows system best  «

third party, which is unbiased and brings in an independent view)?
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FMEA and FMECA

FMEA only provides qualitative analysis (cause effect chain).

FMECA (failure mode, effects and criticality analysis) also provides (limited)
quantitative information.
– each basic failure mode is assigned a failure probability and a failure

criticality
– if based on the result of the FMECA the system is to be improved (to

make it more dependable) the failure modes with the highest probability
leading to failures with the highest criticality are considered first.

Coffee machine example:
– If the coffee machine is damaged, this is more critical than if the coffee

machine is OK and no coffee can be produced temporarily
– If the water has to be refilled every 20 cups and the coffee has to be

refilled every 2 cups, the failure mode “coffee bean container too full” is
more probable than “water tank too full”.
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Criticality Grid

Criticality levels

I

II

III

IV

Probability
of failure

very low low medium high
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Failure Criticalities

IV: Any event which could potentially cause the loss of primary system function(s)
resulting in significant damage to the system or its environment and causes
the loss of life

III: Any event which could potentially cause the loss of primary system function(s)
resulting in significant damage to the system or its environment and negligible
hazards to life

II: Any event which degrades system performance function(s) without appreciable
damage to either system, environment or lives

I: Any event which could cause degradation of system performance function(s)
resulting in negligible damage to either system or environment and no
damage to life
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FMEA/FMECA: Result

Depending on the result of the FMEA/FMECA, it may be necessary to:
– change design, introduce redundancy, reconfiguration, recovery etc.
– introduce tests, diagnoses, preventive maintenance
– focus quality assurance, inspections etc. on key areas
– select alternative materials, components
– change operating conditions (e.g. duty cycles to anticipate/avoid wear-out

failures)
– adapt operating procedures (allowed temperature range etc.)
– perform design reviews
– monitor problem areas during testing, check-out and use
– exclude liability for identified problem areas
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FMEA: Steps (1)

1) Break down the system into components.

2) Identify the functional structure of the system and how the components
contribute to functions.

f1 f2 f3 f4 f5 f6 f7
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FMEA: Steps (2)

3) Define failure modes of each component
– new components: refer to similar already used components
– commonly used components: base on experience and measurements
– complex components: break down in subcomponents and derive failure

mode of component by FMEA on known subcomponents
– other: use common sense, deduce possible failures from functions and

physical parameters typical of the component operation

4) Perform analysis for each failure mode of each component and record results
in table:

component
name/ID function failure

mode
failure
cause

failure effect
local    global

failure
detection

other
provision

remark
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Example (Generic) Failure Modes

- fails to remain (in position)

- fails to open

- fails to close

- fails if open

- fails if closed

- restricted flow

- fails out of tolerance (high)

- fails out of tolerance (low)

- inadvertent operation

- intermittent operation

- premature operation

- delayed operation

- false actuation

- fails to stop

- fails to start

- fails to switch

- erroneous input (increased)

- erroneous input (decreased)

- erroneous output (increased)

- erroneous output (decreased)

- loss of input

- loss of output

- erroneous indication

- leakage
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Other FMEA Table Entries

Failure cause: Why is it that the component fails in this specific way?
To identify failure causes is important to
- estimate probability of occurrence
- uncover secondary effects
- devise corrective actions

Local failure effect: Effect on the system element under consideration (e.g. on the
output of the analyzed component). In certain instances there may not be a
local effect beyond the failure mode itself.

Global failure effect: Effect on the highest considered system level. The end effect
might be the result of multiple failures occurring as a consequence of each
other.

Failure detection: Methods to detect the component failure that should be used.

Other provisions: Design features might be introduced that prevent or reduce the
effect of the failure mode (e.g. redundancy, alarm devices, operating
restrictions).
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Common Mode Failures (CMF)

In FMEA all failures are analyzed independent of each other.

Common mode failures are related failures that can occur due to a single source
such as design error, wrong operation conditions, human error etc.

Example: Failure of power supply common to redundant units causes both
redundant units to fail at the same time.

failure mode x no problem

failure mode y no problem

common source & serious
consequence
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Example: Differential Pressure Transmitter (1)

coil with
inductivity L1

iron core

diaphragm

pressure p1 pressure p2

Functionality: Measure difference in pressures p1 – p2.

coil with
inductivity L2

i1(t)

u1(t)

i2(t)

u2(t)

p1 – p2 = f1 (inductivity L1, temperature T, static pressure p)
p1 – p2 = f2 (inductivity L2, temperature T, static pressure p)
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Example: Differential Pressure Transmitter (2)

safe 
output 
(e.g. 
upscale)

p1 → L1

p2 → L2

pstatic

Tempsens

Tempelec

power 
supply

controlled 
current 
generator 4..20 mA

output current generator

proces- 
sing 1

proces- 
sing 2

checking 
(limits, 
consis- 
tency)

=

acquisition of 
sensor inputs

sensor data 
preparation

sensor data 
processing

=

A/D 
conversion

different 
failure 
effects

output data 
generation

watch- 
dog
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FMEA for Pressure Transmitter

ID-Nr Funct i o n Fai l ure
Mo de

Lo c al  Ef fec t Detec t i o n
Me chani s m

Fai l ure  Handl i ng Gl o bal  Ef fect Co mments

1.1.1 p1
measure-
ment

out of fail-
safe
accuracy
range

pressure input via
L1 wrong

limit check and
consistency check
(comparison with p2)
in software of sensor
data processing

go to safe state output driven to
up/downscale

diaphragm failure (both
p1 and p2 wrong)
detected by  comparison
with pstatic, requires
that separate sensor is
used for pstatic

1.1.2 wrong but
within fail-
safe
accuracy
range

pressure input via
L1 slightly wrong

consistency check
(comp. with p2),
detection of small
failures not guaranteed
(allowed difference p1-
p2)

not applicable (n/a) output value slightly
wrong, but within fail-
safe accuracy range

1.2.1 p2
measure-
ment

out of fail-
safe
accuracy
range

pressure input via
L2 wrong

limit check and
consistency check
(comparison with p1)
in software of sensor
data processing

go to safe state output driven to
up/downscale

1.2.2 wrong but
within fail-
safe
accuracy
range

pressure input via
L2 slightly wrong

consistency check
(comp. with p1),
detection of small
failures not guaranteed
(allowed difference p1-
p2)

n/a output value slightly
wrong, but within fail-
safe accuracy range

continue on your own ...
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Fault Tree Analysis (FTA)

In contrast to FMEA (which is inductive, bottom-up), FTA is deductive (top-down).

FMEA

failure modes of components

failures
of system

FTA
system state

to avoid

possible causes of the state

The main problem with both FMEA and FTA is to not forget anything important.

Doing both FMEA and FTA may help to become more complete (2 different views).
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Example Fault Tree Analysis

coffee machine
doesn’t work

≥ 1

water tank
empty

power
switch off

basic event:
not further
developed

no coffee
beans

undeveloped event:
analyzed elsewhere

&
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Example: Protection System

overfunctions reduced
          Potot = Po

tripping algorithm 1

tripping algorithm 2

&
2

underfunctions increased
          Putot = 2Pu - Pu2

tripping algorithm 1

tripping algorithm 2

&comparison
dynamic
modeling
necessary

inputs

inputs

trip
signal

trip
signal

repair
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FTA: IEC Standard

defines basic principles of FTA
provides required steps for analysis
identifies appropriate assumptions, events and failure modes
provides identification rules and symbols
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Markov Model

OK

latent overfunction
1 chain, n. detectable

detectable error
1 chain, repair

latent underfunction
not detectable

latent underfunction
2 chains, n. detectable

overfunction

underfunction

(λ1+λ2)(1−c)

λ3(1−c)

(λ1+λ2+λ3)c

µ

σ1+λ1(1−c)

σ2

σ2

λ1(1−c)

λ1+λ2+λ3c

(λ1+λ2)c+λ3

λ2(1−c)

(λ1+λ2)c+λ3

λ1=0.01, λ2=λ3=0.025, σ1=5, σ2=1, µ=365, c=0.9 [1/Y]
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Analysis Results

mean time to
overfunction [Y]

mean time to
underfunction [Y]

200

300

400

assumption: SW error-free

500050050

weekly test

permanent comparison (red. HW)

permanent comparison (SW)

2-yearly test
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Example: IEC 61508

integrity level
control systems protection systems

4 ≥ 10 -9  to < 10 -8 ≥ 10 -5  to < 10 -4

3 ≥ 10 -8  to < 10 -7 ≥ 10 -4  to < 10 -3

2 ≥ 10 -7  to < 10 -6 ≥ 10 -3  to < 10 -2

1 ≥ 10 -6  to < 10 -5 ≥ 10 -2  to < 10 -1

[per hour] [per operation]
safety

For each of the safety integrity levels it specifies requirements
(see copy out of standard).

Generic standard for safety-related systems.

Specifies 4 safety integrity levels, or SILs (with specified max. failure rates):
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6 9

16

14

13

12

5
4

3
2
1

Cradle-to-grave reliability (IEC 61508)

concept

overall scope definition

hazard and risk analysis

overall safety requirements

safety requirements allocation

overall
operation and
maintenance
planning

overall
safety
validation
planning

overall
installation and
commissioning
planning

safety-related
systems:
E/E/PES

overall installation 
and commissioning

overall safety validation

overall operation, maintenance
and repair

decommissioning and disposal

realisation
7 8

15 overall modifications 
and retrofit

safety-related
systems:
other
technology10

external risk
reduction
facilities11

overall planning

realisation realisation
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IEC 61580



282004 June BE 9.6 Dependability AnalysisEPFL - Industrial Automation

Software safety integrity and the development lifecycle (V-model)
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